請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46606完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭(Anthony J. T. Lee) | |
| dc.contributor.author | Ai-Chi Lin | en |
| dc.contributor.author | 林愛萁 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:18:23Z | - |
| dc.date.available | 2013-07-22 | |
| dc.date.copyright | 2010-07-22 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-21 | |
| dc.identifier.citation | [1] P. U. C. Agundu, Financial ratios and corporate performance appraisal: A cross-industry analysis, Inter-world Journal of Management and Development Studies, Vol. 2, No. 1, 2006, pp. 209-213.
[2] G. S. Atsalakis, K. P. Valavanis, Forecasting stock market short-term trends using a neuro-fuzzy based methodology, Expert Systems with Applications, Vol. 36, 2009, pp. 10696-10707. [3] B. Back, J. Toivonen, H. Vanharanta, A. Visa, Comparing numerical data and text information from annual reports using self-organizing maps, International Journal of Accounting Information Systems, Vol. 2, No. 4, 2001, pp. 249-269. [4] C. C. Chang, C. J. Lin, LIBSVM: A library for support vector machines, 2001, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. [5] P. C. Chang, C. H. Liu, A TSK type fuzzy rule based system for stock price prediction, Expert System with Applications, Vol. 34, 2008, pp. 135-144. [6] D. Y. Chiu, P. J. Chen, Dynamically exploring internal mechanism of stock market by fuzzy-based support vector machines with high dimension input space and genetic algorithm, Expert Systems with Applications, Vol. 36, 2009, pp. 1240-1248. [7] D. Dueck, B. J. Frey, Non-metric affinity propagation for unsupervised image categorization, International Conference on Computer Vision, 2007. [8] B. J. Frey, D. Dueck, Clustering by passing messages between data points, Science, Vol. 315, 2007, pp. 972-976. [9] G. P. C. Fung, J. X. Yu, H. Lu, The predicting power of textual information on financial markets, IEEE Intelligent Informatics Bulletin, Vol. 5, No. 1, 2005, pp. 1-10. [10] J. Gerdes Jr., Edgar-Analyzer: Automating the analysis of corporate data contained in the SEC’s EDGAR database, Decision Support Systems, Vol. 35, 2003, pp. 7-29. [11] T. Geweniger, D. Zuhlke, B. Hammer, T. Villmann, Fuzzy variant of affinity propagation in comparison to median fuzzy c-means, Lecture Notes in Computer Science, Vol. 5629, 2009, pp. 72-79. [12] G. Gidofalvi, Using news articles to predict stock price movements, Technical Report, Department of Computer Science and Engineering, University of California, San Diego, 2001. [13] J. Han, M. Kamber, Data Mining: Concepts and Techniques, second edition, Elsevier, San Francisco, USA, 2006. [14] Y. Jia, J. Wang, C. Zhang, X. S. Hua, Finding image exemplars using fast sparse affinity propagation, Proceeding of the 16th ACM international conference on Multimedia, 2008, pp. 639-642. [15] J. M. Keller, M. R. Gary, J. A. Givens JR., A fuzzy k-nearest neighbor algorithm, IEEE Transactions on Systems, Mans, and Cybernetics, Vol. 15, No. 4, 1985, pp. 580-585. [16] A. Kloptchenko, Determining companies’ future financial performance from their past quarterly reports, Proceedings of First Annual Pre-ICIS Workshop on Decision Support System, Seattle, USA, 2003. [17] A. Kloptchenko, T. Eklund, B. Back, J. Karlsson, H. Vanharanta, A. Visa, Combining data and text mining techniques for analyzing financial reports, Intelligent Systems in Accounting, Finance and Management, Vol. 12, No. 1, 2004, pp. 29-41. [18] A. Kloptchenko, C. Magnusson, B. Back, A. Visa, H. Vanharanta, Mining textual contents of financial reports, The International Journal of Digital Accounting Research, Vol. 4, 2004. [19] T. Kohonen, The self-organizing map, Neurocomputing, Vol. 21, No. 1-3, 1998, pp. 1-6. [20] M. Lam, Neural network techniques for financial performance prediction: integrating fundamental and technical analysis, Decision Support Systems, Vol. 37, 2004, pp. 567-581. [21] D. Lashkari, P. Golland, Convex clustering with exemplar-based models, Advances in Neural Information Processing Systems, 2007. [22] M. C. Lee, Using support vector machine with a hybrid feature selection method to the stock trend prediction, Expert Systems with Applications, Vol. 36, 2009, pp. 10896-10904. [23] J. Lehtinen, Financial ratios in an international comparison: Validity and reliability, Vasa: Acta Wasaensia, Finland, 1996. [24] S. T. Li, H. F. Ho, Predicting financial activity with evolutionary fuzzy case-based reasoning, Expert System with Applications, Vol. 36, 2009, pp. 411-422. [25] C. Magnusson, A. Arppe, T. Eklund, B. Back, H. Vanharanta, A. Visa, The language of quarterly reports as an indicator of change in the company’s financial status, Information and Management, Vol. 42, 2005, pp. 561-574. [26] B. G. Malkiel, The efficient market hypothesis and its critics, Journal of Economic Perspectives, Vol. 12, No. 1, 2003, pp. 59-82. [27] M. A. Mittermayer, Forecasting intraday stock price trends with text mining techniques, Proceedings of the 37th Hawaii International Conference on System Sciences, Vol. 3, 2004, pp. 30064.2. [28] Z. J. Niu Yi, H. Wenbin, Using genetic algorithm to improve fuzzy K-NN, Proceedings of International Conference on Computational Intelligence and Security, 2008, pp. 475-479. [29] M. F. Porter, The English (Porter2) stemming algorithm, Available at: http://snowball.tartarus.org/algorithms/english/stemmer.html, 2002. [30] M. F. Porter, An algorithm for suffix stripping, Program, Vol. 14, No. 3, 1980. pp. 130-137. [31] X. Y. Qiu, P. Srinivasan, N. Street, Exploring the forecasting potential of company annual reports, Proceedings of the American Society for Information Science and Technology, Vol. 43, No. 1, 2006, pp. 168. [32] R. P. Schumaker, H. Chen, A quantitative stock prediction system based on financial news, International Journal of Information Processing and Management, Vol. 45, No. 5, 2009, pp. 571-583. [33] R. P. Schumaker, H. Chen, Textual analysis of stock market prediction using financial news articles, Information Processing and Management, Vol. 45, No. 5, 2009, pp. 571-583. [34] Standard & Poor's Compustat database, http://wrds.wharton.upenn.edu/connect/. [35] S. Takahashi, M. Takahashi, H. Takahashi, K. Tsuda, Analysis of stock price return using textual data and numerical data through text mining, Lecture Notes in Computer Sciences, Springer Berlin, Heidelberg, 2006, pp. 310-316. [36] A. Timmermann, C. W. J. Granger, Efficient market hypothesis and forecasting, International Journal of Forecasting, Vol. 20, 2004, pp.15-27. [37] Y. J. Wang, H. S. Lee, A clustering method to identify representative financial ratios, International Journal of Information Sciences, Vol. 178, 2008, pp. 1087-1097. [38] K. Wang, J. Zhang, D. Li, X. Zhang, T. Guo, Adaptive affinity propagation clustering, Acta Automatica Sinica, Vol. 33, No. 12, 2007, pp. 1242-1246. [39] M. E. Wohar, D. E. Rapach, Valuation ratios and long-horizon stock price predictability, Journal of Applied Economics, Vol. 20, No. 3, 2005, pp.327-344. [40] Yahoo & Google Historical Quotes Downloader, http://www.yloader.com/. [41] Yahoo! Finance, http://finance .yahoo.com/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46606 | - |
| dc.description.abstract | 由於資訊科技的發達,使得投資人可以便捷地取得上市公司公開揭露的財務報表,藉由分析這些財務報表,可以幫助我們選擇投資標的與擬定投資策略。在本篇論文中,我們提出一個方法以選取高效能投資股。我們所提出的方法包括四個階段。第一階段,我們從每一篇財務報表中,萃取財務活動片語(financial activity phrase)與財務比率(financial ratio),並將它轉換成一個特徵向量。第二階段,我們利用affinity propagation (AP) 演算法,將所有特徵向量依相似性分成數個群集,並找出每一個群集內的代表特徵向量。第三階段,我們利用fuzzy k-nearest neighbors (FKNN)演算法,將每個特徵向量模糊化,以計算出每一個特徵向量對不同股價變動趨勢的隸屬程度。第四階段,我們利用這些模糊化後的特徵向量,計算新的特徵向量的隸屬程度,並對股票進行排序,然後,從排序中選出高效能投資股。由於,我們利用AP演算法將特徵向量分群,可降低FKNN選到不好的參考特徵向量,因此,我們所提出的方法可以提供一個不錯的管道,選取高效能投資股。實驗結果顯示,在中長期股價趨勢預測的投資平均獲利,我們所提出的方法優於支援向量機方法。 | zh_TW |
| dc.description.abstract | With advance in information technology, a large amount of financial reports can be accessed easily. Analyzing those financial reports can help investors to select investment targets and plan their investment strategies. In this thesis, we propose an effective method to select top performing stocks. The proposed method consists of four phases. First, we extract financial activity phrases and financial ratios from each financial report and transform it into a feature vector. Second, we utilize the affinity propagation (AP) algorithm to group similar feature vectors into clusters, and identify exemplar of each cluster. Third, we use the fuzzy k-nearest neighbors (FKNN) algorithm to compute membership degrees towards each class for a feature vector. Finally, we use these fuzzified feature vectors as references to rank new feature vectors and select top performing stocks from the ranked list. Since we utilize the AP algorithm to reduce the chance for the FKNN algorithm to choose bad references when fuzzifying the membership degrees of a feature vector, the proposed method provides a good channel to select top performing stocks. The experimental results show that the proposed method outperforms the SVM method in terms of average trading profit. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:18:23Z (GMT). No. of bitstreams: 1 ntu-99-R97725014-1.pdf: 564587 bytes, checksum: c2ce9e80b36d947e811c67914e3f732b (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Table of Contents i
List of Figures ii List of Tables iii Chapter 1 Introduction 1 Chapter 2 Literature Review 4 Chapter 3 Preliminaries and Problem Definitions 7 3.1 Textual part of financial reports 7 3.2 Numerical part of financial reports 9 Chapter 4 The Proposed Method 11 4.1 The affinity propagation algorithm 12 4.2 The fuzzy k-nearest neighbor method 15 4.3 Selecting top performing stocks 16 Chapter 5 Performance Analysis 19 5.1 Dataset 19 5.2 Evaluation metric 20 5.3 Experimental results 21 Chapter 6 Conclusions and Future Work 28 References 30 | |
| dc.language.iso | en | |
| dc.subject | 財務報表 | zh_TW |
| dc.subject | affinity propagation演算法 | zh_TW |
| dc.subject | fuzzy k-nearest neighbors演算法 | zh_TW |
| dc.subject | 股價預測 | zh_TW |
| dc.subject | fuzzy k-nearest neighbors algorithm | en |
| dc.subject | financial report | en |
| dc.subject | stock price prediction | en |
| dc.subject | affinity propagation algorithm | en |
| dc.title | 以模糊概念選擇高效能投資股 | zh_TW |
| dc.title | A Fuzzy Approach to Selecting Top Performing Stocks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳彥良,諶家蘭 | |
| dc.subject.keyword | affinity propagation演算法,fuzzy k-nearest neighbors演算法,股價預測,財務報表, | zh_TW |
| dc.subject.keyword | affinity propagation algorithm,fuzzy k-nearest neighbors algorithm,stock price prediction,financial report, | en |
| dc.relation.page | 33 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-21 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 551.35 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
