Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46582
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁啟惠(Chi-Huey Wong)
dc.contributor.authorTing Chengen
dc.contributor.author鄭婷zh_TW
dc.date.accessioned2021-06-15T05:16:54Z-
dc.date.available2012-07-23
dc.date.copyright2010-07-23
dc.date.issued2010
dc.date.submitted2010-07-21
dc.identifier.citation1. EASL (1999) EASL International Consensus Conference on hepatitis C. Paris, 26-27 February 1999. Consensus statement. J Hepatol 31 Suppl 1:3-8.
2. Choo QL, et al. (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244(4902):359-362.
3. Alter MJ (1999) Hepatitis C virus infection in the United States. J Hepatol 31 Suppl 1:88-91.
4. Lauer GM & Walker BD (2001) Hepatitis C virus infection. N Engl J Med 345(1):41-52.
5. Wasley A & Alter MJ (2000) Epidemiology of hepatitis C: geographic differences and temporal trends. Semin Liver Dis 20(1):1-16.
6. Feld JJ & Hoofnagle JH (2005) Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436(7053):967-972.
7. Alter MJ, et al. (1992) The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N Engl J Med 327(27):1899-1905.
8. Halstead SB, Shotwell H, & Casals J (1973) Studies on the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. J Infect Dis 128(1):15-22.
9. Tellinghuisen TL, Evans MJ, von Hahn T, You S, & Rice CM (2007) Studying hepatitis C virus: making the best of a bad virus. J Virol 81(17):8853-8867.
10. De Francesco R (1999) Molecular virology of the hepatitis C virus. J Hepatol 31 Suppl 1:47-53.
11. Moradpour D, Penin F, & Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5(6):453-463.
12. Beeck AOD & Dubuisson J (2003) Topology of hepatitis C virus envelope glycoproteins. Reviews in Medical Virology 13(4):233-241.
13. Brohm C, et al. (2009) Characterization of determinants important for hepatitis C virus p7 function in morphogenesis by using trans-complementation. J Virol 83(22):11682-11693.
14. Germi R, et al. (2002) Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption. J Med Virol 68(2):206-215.
15. Monazahian M, et al. (1999) Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J Med Virol 57(3):223-229.
16. Pileri P, et al. (1998) Binding of hepatitis C virus to CD81. Science 282(5390):938-941.
17. Scarselli E, et al. (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21(19):5017-5025.
18. Evans MJ, et al. (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446(7137):801-805.
19. Ploss A, et al. (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457(7231):882-886.
20. Lozach PY, et al. (2003) DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 278(22):20358-20366.
21. Gardner JP, et al. (2003) L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci U S A 100(8):4498-4503.
22. Liu J, et al. (2009) Specifically binding of L-ficolin to N-glycans of HCV envelope glycoproteins E1 and E2 leads to complement activation. Cell Mol Immunol 6(4):235-244.
23. Levy S, Todd SC, & Maecker HT (1998) CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol 16:89-109.
24. Higginbottom A, et al. (2000) Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J Virol 74(8):3642-3649.
25. Flint M, et al. (1999) Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J Virol 73(8):6235-6244.
26. Bartosch B, et al. (2003) Cell Entry of Hepatitis C Virus Requires a Set of Co-receptors That Include the CD81 Tetraspanin and the SR-B1 Scavenger Receptor. Journal of Biological Chemistry 278(43):41624-41630.
27. Owsianka AM, et al. (2006) Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. J Virol 80(17):8695-8704.
28. Rothwangl KB, Manicassamy B, Uprichard SL, & Rong L (2008) Dissecting the role of putative CD81 binding regions of E2 in mediating HCV entry: putative CD81 binding region 1 is not involved in CD81 binding. Virol J 5:46.
29. Heile JM, et al. (2000) Evaluation of hepatitis C virus glycoprotein E2 for vaccine design: an endoplasmic reticulum-retained recombinant protein is superior to secreted recombinant protein and DNA-based vaccine candidates. J Virol 74(15):6885-6892.
30. Cocquerel L, et al. (1999) The transmembrane domain of hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. J Virol 73(4):2641-2649.
31. Cocquerel L, Meunier JC, Pillez A, Wychowski C, & Dubuisson J (1998) A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2. J Virol 72(3):2183-2191.
32. Deleersnyder V, et al. (1997) Formation of native hepatitis C virus glycoprotein complexes. J Virol 71(1):697-704.
33. Dubuisson J, et al. (1994) Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. J Virol 68(10):6147-6160.
34. Rosa D, et al. (1996) A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells. Proc Natl Acad Sci U S A 93(5):1759-1763.
35. Choo QL, et al. (1994) Vaccination of chimpanzees against infection by the hepatitis C virus. Proc Natl Acad Sci U S A 91(4):1294-1298.
36. Stamataki Z, et al. (2007) Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive neutralizing antibodies. Vaccine 25(45):7773-7784.
37. Broering TJ, et al. (2009) Identification and Characterization of Broadly Neutralizing Human Monoclonal Antibodies Directed against the E2 Envelope Glycoprotein of Hepatitis C Virus. Journal of Virology 83(23):12473-12482.
38. Kornfeld R & Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631-664.
39. Gavel Y & von Heijne G (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng 3(5):433-442.
40. Ajit Varki RDBM, Gerald W Hart, and Pamela Stanley (2008) Essentials of Glycobiology (Cold Spring Harbor Laboratory Press) 2 Ed.
41. Hebert DN, Zhang JX, Chen W, Foellmer B, & Helenius A (1997) The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol 139(3):613-623.
42. Ohuchi M, Ohuchi R, Feldmann A, & Klenk HD (1997) Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J Virol 71(11):8377-8384.
43. Wei X, et al. (2003) Antibody neutralization and escape by HIV-1. Nature 422(6929):307-312.
44. Wormald MR & Dwek RA (1999) Glycoproteins: glycan presentation and protein-fold stability. Structure 7(7):R155-160.
45. Goffard A, et al. (2005) Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. J Virol 79(13):8400-8409.
46. Iacob RE, Perdivara I, Przybylski M, & Tomer KB (2008) Mass spectrometric characterization of glycosylation of hepatitis C virus E2 envelope glycoprotein reveals extended microheterogeneity of N-glycans. J Am Soc Mass Spectrom 19(3):428-444.
47. Op De Beeck A, et al. (2004) Characterization of functional hepatitis C virus envelope glycoproteins. J Virol 78(6):2994-3002.
48. Falkowska E, Kajumo F, Garcia E, Reinus J, & Dragic T (2007) Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization. J Virol 81(15):8072-8079.
49. Helle F, et al. (2007) The neutralizing activity of anti-hepatitis C virus antibodies is modulated by specific glycans on the E2 envelope protein. J Virol 81(15):8101-8111.
50. Slater-Handshy T, Droll DA, Fan X, Di Bisceglie AM, & Chambers TJ (2004) HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing. Virology 319(1):36-48.
51. Mercer DF, et al. (2001) Hepatitis C virus replication in mice with chimeric human livers. Nat Med 7(8):927-933.
52. Abrignani S, Houghton M, & Hsu HH (1999) Perspectives for a vaccine against hepatitis C virus. J Hepatol 31 Suppl 1:259-263.
53. McNeil C (2006) Hepatitis C vaccine approaches phase II trial. J Natl Cancer Inst 98(5):301-302.
54. Vajdy M, et al. (2006) Hepatitis C virus polyprotein vaccine formulations capable of inducing broad antibody and cellular immune responses. J Gen Virol 87(Pt 8):2253-2262.
55. EASL (2009) oral session of the 44th EASL (European Association for the Study of Liver disease) annual meeting held in Copenhagen.
56. Elmowalid GA, et al. (2007) Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc Natl Acad Sci U S A 104(20):8427-8432.
57. EASL (2010) 45th EASL (European Association for the Study of Liver disease) annual meeting held in Vienna.
58. Zhang M, et al. (2004) Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology 14(12):1229-1246.
59. Wang CC, et al. (2009) Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A 106(43):18137-18142.
60. Chen MW, et al. (2008) A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc Natl Acad Sci U S A 105(36):13538-13543.
61. Whidby J, et al. (2009) Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. J Virol 83(21):11078-11089.
62. Flint M, et al. (2000) Functional characterization of intracellular and secreted forms of a truncated hepatitis C virus E2 glycoprotein. J Virol 74(2):702-709.
63. Kopecky-Bromberg SA, et al. (2009) Alpha-C-galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine. Vaccine 27(28):3766-3774.
64. Lin K-H, et al. (2010) In vivo protection of bacterial and viral infections in murine models using a synthetic new a-GalCer analog. Antimicrobial Agent and Chemo, in press.
65. Petrovsky N & Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82(5):488-496.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46582-
dc.description.abstract全世界大約有百分之三的人口感染C型肝炎病毒(HCV)。服用Ribavirin並同時注射聚乙烯二醇化甲型干擾素(pegylated interferon-α)是目前的治療方法,但是此療法對不同基因型C型肝炎病毒的感染有不同效果。然而現今仍然沒有可對抗或預防C型肝炎病毒的疫苗,因此如何製備出有效的疫苗是一大課題。
C型肝炎病毒的基因組可轉譯出一條多蛋白(polyprotein),並且能被宿主以及病毒本身的蛋白酶切割成多段結構蛋白以及非結構蛋白。其中,包膜蛋白(envelope protein)屬於結構蛋白,表現在病毒的表面上,包含了E1及E2兩個蛋白,並且在結合受體(receptor)與病毒進入細胞上扮演了重要的角色。E1和E2蛋白是高度醣化(glycosylated)的醣蛋白,蛋白質的醣化對於蛋白質折疊以及受體的結合來說都十分重要,不過醣也可以遮蔽蛋白質上重要的、具有功能性的位置,讓宿主無法對病毒產生有效的抗體來對抗病毒的感染。
我的研究是探討醣在C型肝炎病毒包膜蛋白E1以及E2醣蛋白的角色。我先從人類293T細胞中製造且純化出全長(full-length)的E1E2膜蛋白,以及去除部分C端(C-terminal truncated)的E2蛋白。接著,再利用醣內切酶 H (Endoglycosidase H, Endo H)酵素去除這兩種蛋白上除了第一個乙醯葡萄糖胺(N-acetylglucosamine)之外大部分的醣,這樣處理後的蛋白即為單醣形式(mono-glycosylated form),而沒有用醣內切酶 H處理過的包膜蛋白,稱之為全醣形式(fully-glycosylated form)。接著我比較了這兩種不同醣形式的全長E1E2以及C端部分切除的E2蛋白上的醣化程度及種類,確定醣是否切除的完整;並用圓二色光譜(circular dichroism)比較其二級結構,同時評估其對受體CD81的結合能力,探討切除了醣的蛋白是否仍然具有一樣的結構及活性。最後,並試圖探討C型肝炎病毒包膜醣蛋白引發老鼠免疫反應的能力。
實驗結果發現,單醣形式上有偵測到的醣化位置都只剩下一顆乙醯葡萄糖胺,而二級結構與全醣形式相似,與受體CD81結合能力則是明顯的比全醣形式來的高。另外,在引發免疫反應的部分,只有全醣形式可以引發出較高的抗體效價,而單醣形式的效果比較差。
zh_TW
dc.description.abstractIt was estimated that about 3% of the worldwide population were infected with hepatitis C virus (HCV). The current therapy is ribavirin combined with pegylated interferon-α, and the effect was differential for infections with various HCV genotypes. Until now there is still no vaccine available.
The genome of HCV encodes a polyprotein which could be cleaved into structural and nonstructural proteins by host and viral proteases. The envelope proteins are structural proteins which are expressed on the viral surface and are comprised of heterodimers of E1 and E2. They play an important role in receptor binding and virus entry. HCV E1 and E2 proteins are highly glycosylated. Glycans may be crucial for protein folding or receptor binding or both. Glycans also can mask the functionally important region of protein so that proteins may not produce effective antibodies to defeat the viruses.
Our ultimate goal is to investigate the roles of glycans on HCV E1/E2 glycoproteins, especially on the immunogenicity. Recombinant HCV envelope proteins were produced from human 293T cells. The purified proteins are either used directly (fully-glycosylated) or digested with Endoglycosidase H to remove all the glycans except the first GlcNAc (mono-glycosylated). The glycosylation patterns of fully- and mono-glycosylated HCV envelope proteins were further examined by glycan profiling. Their structural and functional properties were also evaluated with circular dichroism spectroscopy and with binding activity to CD81, a receptor of HCV. In addition, the immunogenicity of HCV envelope proteins in various forms was investigated.
The results showed that the N-glycans of mono-glycosylated proteins were mostly one HexNAc, and the secondary structures of fully- and mono-glycosylated proteins were similar. Furthermore, the CD81 binding activity of mono-glycosylated proteins was higher than fully-glycosylated proteins. However, the immunogenicity of fully-glycosylated proteins was higher than mono-glycosylated HCV envelope proteins.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:16:54Z (GMT). No. of bitstreams: 1
ntu-99-R97b46005-1.pdf: 3052372 bytes, checksum: 3739427e822e8d1393cae2188a139251 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAcknowledgement ........................................................................................................... I
Chinese abstract ............................................................................................................. II
English abstract ........................................................................................................... III
Table of contents .......................................................................................................... IV
Figures ......................................................................................................................... VII
Tables ............................................................................................................................ IX List of abbreviations ...................................................................................................... X
1. INTRODUCTION ................................................................................................... 1
Receptors for cell entry ............................................................................................... 2
E1 and E2 glycoprotein .............................................................................................. 2
The N-glycosylation of E1 and E2 proteins ............................................................... 3
HCV vaccine development ......................................................................................... 4
The role of glycans on HCV envelope proteins in immune responses ....................... 6
The goal of this study ................................................................................................. 6
2. MATERIALS and METHODS .............................................................................. 8
2.1 Materials ............................................................................................................ 8
2.2 Methods ............................................................................................................. 8
2.2.1 Cloning of HCV envelope protein ......................................................... 8
Polymerase chain reaction ..................................................................... 9
DNA electrophoresis ............................................................................. 9
Digestion of inserted DNA and the target vector ................................ 10
DNA ligation ....................................................................................... 10
Transformation .................................................................................... 10
Colony PCR .......................................................................................... 11
2.2.2 Protein expression and purification ...................................................... 11
Plasmid preparation by Maxiprep ........................................................ 11
Plasmid transfection to 293T cells ........................................................ 11
Protein purification .............................................................................. 12
Determination of protein concentration ............................................... 13
2.2.3 Protein analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting ............................. 13
2.2.4 Preparation of mono-glycosylated proteins ......................................... 14
Deglycosylation of fully- to mono-glycosylated proteins ................... 14
Glycan profiling by LC-MS/MS ......................................................... 15
2.2.5 Circular dichroism (CD) spectroscopy ................................................ 16
2.2.6 Measurement of CD81 binding activity .............................................. 16
2.2.7 Immunogenicity studies ....................................................................... 17
Measurement of endotoxin level ......................................................... 17
Mice immunization .............................................................................. 17
ELISA determination ........................................................................... 18
3. RESULTS AND DISCUSSION ............................................................................ 19
3.1 Purification of recombinant HCV envelope proteins ...................................... 19
3.1.1 Purification of HCV full-length E1E2 and full-length E2 proteins ..... 20
3.1.2 Purification of HCV E2 proteins lacking a transmembrane domain ... 20
3.2 Production of mono-glycosylated HCV envelope proteins ............................. 21
3.2.1 Purification of mono-glycosylated HCV FL_E1E2 and iE2 ............... 21
3.2.2 Determination of N-glycans on FL_E1E2, iE2, and sE2 .................... 22
3.2.3 Determination of N-glycans of mono-glycosylated HCV FL_E1E2 and iE2 proteins .......................................................................................... 23
3.3 Comparison of secondary structures of full-length E1E2 and intracellular E2 in different glycoforms ........................................................................................ 24
3.4 Comparison of the binding activity of CD81-LEL with full-length E1E2, intracellular E2, and secreted E2 ..................................................................... 24
3.5 The immunogenicity of fully- and mono-glycosylated full-length E1E2, intracellular E2, and secreted E2 ..................................................................... 26
4. CONCLUSION ...................................................................................................... 28
REFERENCES ............................................................................................................. 31
Figures
Fig. 1 HCV genome organization .............................................................................. 38
Fig. 2 Processing and maturation of an N-glycan ..................................................... 39
Fig. 3 N-glycosylation sites on HCV E1 and E2 envelope proteins .......................... 40
Fig. 4 The cleavage site of Endo-β-N-acetylglucosaminidase H (Endo H) .............. 41
Fig. 5 The flowchart of experiment design ............................................................... 42
Fig. 6 DNA and amino acid sequence of core and envelope proteins of genotype 1a HCV used in this study. ................................................................................... 43
Fig. 7 Schematic presentation of recombinant HCV envelope proteins expressed in HEK293T cells ................................................................................................ 44
Fig. 8 Purification of HCV full-length E1E2 by Ni++ sepharose chromatography ... 45
Fig. 9 Purification of HCV truncated E2 by Ni++ sepharose chromatography .......... 46
Fig. 10 Purification of HCV mono-glycosylated full-length E1E2 by Ni++ sepharose chromatography ............................................................................................... 47
Fig. 11 Purification of mono-glycosylated intracellular HCV E2 by Ni++ sepharose chromatography ............................................................................................... 48
Fig. 12 SDS-PAGE (A) and western blotting results (B) of purified fully- and mono-glycosylated HCV envelope proteins .................................................... 49
Fig. 13 Determination of N-glycans on full-length E1E2, intracellular E2, and secreted E2 by LC-MS/MS ............................................................................................ 50
Fig. 14 Confirmation of N-glycan cleavage on N448, N476, and N645 of mono-glycosylated full-length E1E2 ............................................................... 51
Fig. 15 Confirmation of the N-glycan cleavage on N448, N476, N532, N576, N623, and N645 of mono-glycosylated intracellular E2 ............................................ 52
Fig. 16 Comparison of secondary structures of full-length E1E2 and intracellular E2 in
different glycoforms by circular dichroism ..................................................... 53
Fig. 17 Comparison of the binding activity of CD81-LEL with full-length E1E2, intracellular E2, and secreted E2 by ELISA .................................................... 54
Fig. 18 Immunogenicity of full-length E1E2, intracellular E2, and secreted E2 in different glycoforms ........................................................................................ 55
Tables
Table 1 The primers used for cloning of expression vector. .......................................... 9
dc.language.isoen
dc.titleC型肝炎病毒包膜蛋白的特性及引發免疫反應能力之探討zh_TW
dc.titleCharacterization and Immunogenicity of Hepatitis C Virus Envelope Proteinsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林國儀(Kuo-I Lin),吳宗益(Chung-Yi Wu)
dc.subject.keywordC型肝炎病毒,包膜蛋白E1E2,醣化,醣內切&#37238,H,免疫反應,zh_TW
dc.subject.keywordHCV,envelope protein E1E2,glycosylation,Endo H,immunogenicity,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2010-07-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved