Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46561
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor朱錦洲(Chin-Chou Chu)
dc.contributor.authorYi-Che Chiuen
dc.contributor.author邱奕哲zh_TW
dc.date.accessioned2021-06-15T05:15:42Z-
dc.date.available2015-07-28
dc.date.copyright2010-07-28
dc.date.issued2010
dc.date.submitted2010-07-21
dc.identifier.citation1. Andersen, A., Bohr, T., Stenum, B., Rasmussen, J. J., & Lautrup, B. (2003). Anatomy of a Bathtub Vortex. Physical Review Letters, 91(10), 104502.
2. Andersen, A., Bohr, T., Stenum, B., Rasmussen, J. J., & Lautrup, B. (2006). The bathtub vortex in a rotating container. Journal of Fluid Mechanics, 556(1), 121-146.
3. Andersen, A., Lautrup, B., & Bohr, T. (2003). An averaging method for nonlinear laminar Ekman layers. Journal of Fluid Mechanics, 487(1), 81-90.
4. Black, M. L., & Willoughby, H. E. (1992). The Concentric Eyewall Cycle of Hurricane Gilbert. Monthly Weather Review, 120(6), 947-957.
5. Dritschel, D. G., & Waugh, D. W. (1992). Quantification of the inelastic interaction of two asymmetric vortices in two-dimensional vortex dynamics. Physics of Fluids.A., 4, 1737-1744.
6. Echávez, G., & McCann, E. (2002). An experimental study on the free surface vertical vortex. Experiments in Fluids, 33, 414-421.
7. Huang, S. L., Chen, H. C., Chu, C. C., & Chang, C. C. (2008). On the transition process of a swirling vortex generated in a rotating tank. Experiments in Fluids, 45(2), 267-282.
8. Huang, S. L., Chiu, Y. C., Chu, C. C., Chang, C. C. (2010). An experimental investigation of the formation and transition of a double eyewall vortex. Paper presented at the Proceedings of ISFV14.
9. Hawkins, J. D., & Helveston, M. (2006). Tropical cyclone multiple eyewall configurations. Paper presented at the 27th Conference on Hurricane and Tropical Meteorology,6B.1.
10. Hopfinger, E. J., & van Heijst, G. J. F. (1993). Vortices in rotating fluids. Annual Review of Fluid Mechanics, 25, 241-289.
11. Houze, R. A., Chen, S. S., Smull, B. F., Lee, W. C., & Bell, M. M. (2007). Hurricane intensity and eyewall replacement. Science, 315, 1235-1239.
12. Kuo, H. C., Chang, C. P., Yang, Y. T., & Jiang, H. J. (2009). Western North Pacific Typhoons with Concentric Eyewalls. Monthly Weather Review, 137(11), 3758-3770.
13. Kuo, H. C., Lin, L. Y., Chang, C. P., & Williams, R. T. (2004). The Formation of Concentric Vorticity Structures in Typhoons. Journal of the Atmospheric Sciences, 61(22), 2722-2734.
14. Kuo, H. C., Schubert, W. H., Tsai, C. L., & Kuo, Y. F. (2008). Vortex Interactions and Barotropic Aspects of Concentric Eyewall Formation. Monthly Weather Review, 136(12), 5183-5198.
15. Lundgren, T. (1985). The vortical flow above the drain-hole in a rotating vessel. Journal of Fluid Mechanics, 155, 381-412.
16. Lundgren, T. S. (1985). The vortical flow above the drain-hole in a rotating vessel. Journal of Fluid Mechanics Digital Archive, 155(1), 381-412.
17. McNoldy, B. D. (2004). Triple Eyewall in Hurricane Juliette. Bulletin of the American Meteorological Society, 85(11), 1663-1666.
18. Nezlin, M. V., & Snezhkin, E. N. (1993). Rossby Vortices, Spiral Structures, Solitons: Astrophysics and Plasma Physics in Shallow Water Experiments: Springer-Verlag
19. Noguchi, T., Yukimoto, S., Kimura, R., & Niino, H. (2003). Structure and instability of sink vortex. Paper presented at the Proceedings of PSFVIP-4,F4080.
20. Odgaard, A. (1986). Free-surface air core vortex. Journal of Hydraulic Engineering, 112(7), 610-620.
21. Stepanyants, Y., & Yeoh, G. (2008). Stationary bathtub vortices and a critical regime of liquid discharge. Journal of Fluid Mechanics, 604, 77-98.
22. Wang, Y., & Wu, C. C. (2004). Current understanding of tropical cyclone structure and intensity changes-a review. Meteorology and Atmospheric Physics, 87, 257-278.
23. Willoughby, H. E., Clos, J. A., & Shoreibah, M. G. (1982). Concentric Eye Walls, Secondary Wind Maxima, and The Evolution of the Hurricane vortex. Journal of the Atmospheric Sciences, 39(2), 395-411.
24. Wu, C. C., Cheng, H. J., Wang, Y., & Chou, K. H. (2009). A Numerical Investigation of the Eyewall Evolution in a Landfalling Typhoon. Monthly Weather Review, 137(1), 21-40.
25. Yukimoto, S., Niino, H., Noguchi, T., Kimura, R., & Moulin, F. Y. (2009). Structure of a bathtub vortex: importance of the bottom boundary layer. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1-5.
26. 伊曼紐著, 吳俊傑, & 金棣譯. (2007). 「颱風Divine wind」: 天下文化。
27. 郭書豪. (2009). 「背景渦度下颱風雙眼牆類比實驗探討」: 國立台灣大學應用力學所碩士論文。
28. 黃世霖. (2008). 「具背景效應下單一渦漩之生成、演變及環境熱效應之探討」: 國立台灣大學應用力學所博士論文。
29. 謝秉昇. (2004). 「背景渦度下雙渦漩交互作用之水工實驗」: 國立台灣大學應用力學所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46561-
dc.description.abstract本論文以水工實驗探討雙眼牆渦漩之形成與演變過程。利用盆池渦漩(Bathtub vortex)形成一個近似穩態的渦漩,再以快速改變流量的方式造成渦漩強度(Intensity)及範圍的變化(Strength)。實驗的結果顯示在瞬間減少流量的情況下,可在渦漩的演變過程中觀察到徑向擴張的現象;而快速增加流量時,於環向速度的演變過程中,可測量到雙眼牆的雙速度峰值。實驗上發現,形成雙速度峰值最小半徑比rc* > 1與渦度比ζc*> 4.8,這指出徑向擴張與強度變化是形成雙眼牆結構重要因素,此與Kuo et al. (2004)研究結果相似。然而在自然界中雙眼牆的產生除了渦漩的強弱變化之外,地形影響及不對稱入流也都會產生雙眼牆結構。實驗上,也利用了拖曳地形的方式產生不對稱入流,使得渦漩產生雙眼牆結構,這是在文獻中未曾被探討過的。這些所觀察到的雙眼牆現象與大氣中颱風渦漩有一定程度的相似。zh_TW
dc.description.abstractIn this thesis, the formation and transition process of double eyewall vortices were investigated in a rotating tank with background vorticity. After a quasi-steady bathtub vortex is generated, the vortex is intensified and strengthened caused by a sudden increase and decrease of suction rate. It is observed that the core region of vortex evolves into a transition state, expanding the core radius resultant of the sudden decrease of the suction rate. This is followed by the formation of double eyewall structure identified by the double-peaked velocity distribution in the azimuthal component due to the sudden increase of the suction rate. According to the experimental results, the criterion of formation of double eyewall vortex are with radius ratio rc* > 1 and vorticity ratio ζc* > 4.8. Note that the radius expansion, change of intensity and change of strength are significantly parameters to form the double eyewall structure, which are similar to the results of Kuo et al. (2004). Furthermore, double eyewall phenomea can be also induced by the interaction of topography and nonsymmetrical in-flow. Preliminary results show the phenomenon of the formation of double eyewall structure by towing a topography toward a vortex. Similar experimental results have not been observed in literatures yet. Also, these phenomena are similar to what were observed in typhoon vortices.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:15:42Z (GMT). No. of bitstreams: 1
ntu-99-R95543062-1.pdf: 4933624 bytes, checksum: 707fa23295539793ce54ddfd380c314a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝 ............................................................................................................... ii
摘要 .............................................................................................................. iii
Abstract ....................................................................................................... iv
目錄 ............................................................................................................... v
圖目錄 ........................................................................................................ viii
表目錄 ......................................................................................................... xii
第一章 緒論 ................................................................................................. 1
1.1全文概述 ................................................................................................................ 1
1.2 研究動機及背景 ................................................................................................... 2
1.3文獻回顧 ................................................................................................................ 3
1.3.1 颱風文獻回顧 ................................................................................................ 3
1.3.2 水工實驗文獻回顧 ...................................................................................... 14
第二章 實驗現象及理論公式 ................................................................... 22
2.1 實驗現象 ............................................................................................................. 22
2.2 理論公式 ............................................................................................................. 24
第三章 實驗設備及實驗方法 ................................................................... 32
3.1 實驗設備 ............................................................................................................. 32
3.1.1旋轉平台 ....................................................................................................... 32
3.1.2旋轉水槽 ....................................................................................................... 34
3.1.3渦漩產生機構 ............................................................................................... 35
3.1.4水位補充裝置 ............................................................................................... 36
3.1.5流量量測及擷取裝置 ................................................................................... 37
3.1.6 地形及拖曳地形裝置 .................................................................................. 38
3.2流場顯影及影像擷取設備 .................................................................................. 40
3.2.1照明 ............................................................................................................... 40
3.2.2染料施放設備 ............................................................................................... 40
3.2.3流場顯影粒子 ............................................................................................... 41
3.2.4流場顯影雷射 ............................................................................................... 42
3.2.5影像擷取設備 ............................................................................................... 43
3.2.6工作平台 ....................................................................................................... 45
3.3實驗方法 .............................................................................................................. 45
3.3.1雷射光頁顯像法 ........................................................................................... 45
3.3.2粒子影像追跡法(Particle tracking velocimetry, PTV) ................................. 45
3.3.3歪斜影像(Morph image)校正 ....................................................................... 46
第四章 實驗結果與分析 ........................................................................... 50
4.1不同水深下盆池渦漩的成長現象 ...................................................................... 50
4.1.1實驗方法 ....................................................................................................... 50
4.1.2實驗結果 ....................................................................................................... 50
4.2 盆池渦漩的艾克曼層現象 ................................................................................. 55
4.2.1實驗方法 ....................................................................................................... 55
4.2.2實驗結果 ....................................................................................................... 57
4.3強度變化下之盆池渦漩 ...................................................................................... 59
4.3.1 實驗方法 ...................................................................................................... 60
4.3.2 實驗結果 ...................................................................................................... 60
4.4 地形影響下的盆池渦漩 ..................................................................................... 69
4.4.1 實驗方法 ...................................................................................................... 69
4.4.2 實驗結果 ...................................................................................................... 69
第五章 結論與未來展望 ........................................................................... 77
5.1 結論 ..................................................................................................................... 77
5.2 未來展望 ............................................................................................................. 79
參考文獻 ..................................................................................................... 80
dc.language.isozh-TW
dc.subject雙速度峰值zh_TW
dc.subject盆池渦漩zh_TW
dc.subject雙眼牆結構zh_TW
dc.subject水工實驗zh_TW
dc.subjectDouble eyewall structuresen
dc.subjectDouble-peaked velocityen
dc.subjectRotating tank experimenten
dc.subjectBathtub vortexen
dc.title以實驗探討雙眼牆渦漩之形成與演變過程zh_TW
dc.titleAn Experimental Investigation of the Formation and Transition of a Double Eyewall Vortexen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor張建成(Chien-Cheng Chang)
dc.contributor.oralexamcommittee曾于恆,潘從輝,黃世霖
dc.subject.keyword水工實驗,盆池渦漩,雙眼牆結構,雙速度峰值,zh_TW
dc.subject.keywordRotating tank experiment,Bathtub vortex,Double eyewall structures,Double-peaked velocity,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2010-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
4.82 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved