Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46552
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊啟伸(Chii-Shen Yang)
dc.contributor.authorChang-Jia Linen
dc.contributor.author林千佳zh_TW
dc.date.accessioned2021-06-15T05:15:12Z-
dc.date.available2013-08-24
dc.date.copyright2011-08-24
dc.date.issued2011
dc.date.submitted2011-08-23
dc.identifier.citation1. Oka, Y., et al., The fifth class of Galpha proteins. Proc Natl Acad Sci U S A, 2009. 106(5): p. 1484-9.
2. Wettschureck, N. and S. Offermanns, Mammalian G proteins and their cell type specific functions. Physiol Rev, 2005. 85(4): p. 1159-204.
3. Schoneberg, T., A. Schulz, and T. Gudermann, The structural basis of G-protein-coupled receptor function and dysfunction in human diseases. Reviews of Physiology Biochemistry and Pharmacology, Vol 144, 2002. 144: p. 143-227.
4. Biddlecome, G.H., G. Berstein, and E.M. Ross, Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation. J Biol Chem, 1996. 271(14): p. 7999-8007.
5. Kozasa, T., et al., p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science, 1998. 280(5372): p. 2109-11.
6. Krupnick, J.G. and J.L. Benovic, The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol, 1998. 38: p. 289-319.
7. Fields, T.A. and P.J. Casey, Phosphorylation of Gz alpha by protein kinase C blocks interaction with the beta gamma complex. J Biol Chem, 1995. 270(39): p. 23119-25.
8. Wedegaertner, P.B. and H.R. Bourne, Activation and depalmitoylation of Gs alpha. Cell, 1994. 77(7): p. 1063-70.
9. Mumby, S.M., Reversible palmitoylation of signaling proteins. Curr Opin Cell Biol, 1997. 9(2): p. 148-54.
10. Wedegaertner, P.B., Lipid modifications and membrane targeting of G alpha. Biol Signals Recept, 1998. 7(2): p. 125-35.
11. Milligan, G., Agonist regulation of cellular G protein levels and distribution: mechanisms and functional implications. Trends Pharmacol Sci, 1993. 14(11): p. 413-8.
12. Chan, R.K. and C.A. Otte, Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol, 1982. 2(1): p. 11-20.
13. Chan, R.K. and C.A. Otte, Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol, 1982. 2(1): p. 21-9.
14. Druey, K.M., et al., Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature, 1996. 379(6567): p. 742-6.
15. Koelle, M.R. and H.R. Horvitz, EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell, 1996. 84(1): p. 115-25.
16. Berman, D.M., T.M. Wilkie, and A.G. Gilman, GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell, 1996. 86(3): p. 445-52.
17. Siderovski, D.P. and F.S. Willard, The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci, 2005. 1(2): p. 51-66.
18. Tesmer, J.J., et al., Structure of RGS4 bound to AlF4--activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell, 1997. 89(2): p. 251-61.
19. Jones, T.L., Role of palmitoylation in RGS protein function. Methods Enzymol, 2004. 389: p. 33-55.
20. Ishii, M., et al., Phosphatidylinositol 3,4,5-trisphosphate and Ca2+/calmodulin competitively bind to the regulators of G-protein-signalling (RGS) domain of RGS4 and reciprocally regulate its action. Biochem J, 2005. 385(Pt 1): p. 65-73.
21. Roman, D.L., et al., Identification of small-molecule inhibitors of RGS4 using a high-throughput flow cytometry protein interaction assay. Mol Pharmacol, 2007. 71(1): p. 169-75.
22. Roman, D.L., et al., Allosteric inhibition of the regulator of G protein signaling-Galpha protein-protein interaction by CCG-4986. Mol Pharmacol, 2010. 78(3): p. 360-5.
23. Zhong, H. and R.R. Neubig, Regulator of G protein signaling proteins: novel multifunctional drug targets. J Pharmacol Exp Ther, 2001. 297(3): p. 837-45.
24. Sjogren, B., L.L. Blazer, and R.R. Neubig, Regulators of G protein signaling proteins as targets for drug discovery. Prog Mol Biol Transl Sci, 2010. 91: p. 81-119.
25. Heximer, S.P., et al., Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest, 2003. 111(8): p. 1259.
26. Tang, K.M., et al., Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med, 2003. 9(12): p. 1506-12.
27. Cifelli, C., et al., RGS4 regulates parasympathetic signaling and heart rate control in the sinoatrial node. Circ Res, 2008. 103(5): p. 527-35.
28. Cho, H., et al., Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J, 2003. 17(3): p. 440-2.
29. Hamzah, J., et al., Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 2008. 453(7193): p. 410-4.
30. Michaelides, M., et al., Novel mutations and electrophysiologic findings in RGS9- and R9AP-associated retinal dysfunction (Bradyopsia). Ophthalmology, 2010. 117(1): p. 120-127 e1.
31. Traynor, J.R. and R.R. Neubig, Regulators of G protein signaling & drugs of abuse. Mol Interv, 2005. 5(1): p. 30-41.
32. Blundell, J., et al., Motor coordination deficits in mice lacking RGS9. Brain Res, 2008. 1190: p. 78-85.
33. Gold, S.J., et al., RGS9-2 negatively modulates L-3,4-dihydroxyphenylalanine-induced dyskinesia in experimental Parkinson's disease. J Neurosci, 2007. 27(52): p. 14338-48.
34. Mirnics, K., et al., Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry, 2001. 6(3): p. 293-301.
35. Grillet, N., et al., Generation and characterization of Rgs4 mutant mice. Mol Cell Biol, 2005. 25(10): p. 4221-8.
36. Hurst, J.H. and S.B. Hooks, Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem Pharmacol, 2009. 78(10): p. 1289-97.
37. Hurst, J.H., N. Mendpara, and S.B. Hooks, Regulator of G-protein signalling expression and function in ovarian cancer cell lines. Cell Mol Biol Lett, 2009. 14(1): p. 153-74.
38. Xie, Y., et al., Breast cancer migration and invasion depend on proteasome
degradation of regulator of G-protein signaling 4. Cancer Res, 2009. 69(14): p. 5743-51.
39. Hepler, J.R., et al., RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Proc Natl Acad Sci U S A, 1997. 94(2): p. 428-32.
40. De Vries, L., et al., The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol, 2000. 40: p. 235-71.
41. Ballon, D.R., et al., DEP-domain-mediated regulation of GPCR signaling responses. Cell, 2006. 126(6): p. 1079-93.
42. Chen, C.K., et al., Instability of GGL domain-containing RGS proteins in mice lacking the G protein beta-subunit Gbeta5. Proc Natl Acad Sci U S A, 2003. 100(11): p. 6604-9.
43. Kimple, R.J., et al., RGS12 and RGS14 GoLoco motifs are G alpha(i) interaction sites with guanine nucleotide dissociation inhibitor Activity. J Biol Chem, 2001. 276(31): p. 29275-81.
44. Bansal, G., K.M. Druey, and Z. Xie, R4 RGS proteins: regulation of G-protein signaling and beyond. Pharmacol Ther, 2007. 116(3): p. 473-95.
45. Johnson, J.A. and J.J. Lima, Drug receptor/effector polymorphisms and pharmacogenetics: current status and challenges. Pharmacogenetics, 2003. 13(9): p. 525-34.
46. Riddle, E.L., et al., Multi-tasking RGS proteins in the heart: the next therapeutic target? Circ Res, 2005. 96(4): p. 401-11.
47. Larminie, C., et al., Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Brain Res Mol Brain Res, 2004. 122(1): p. 24-34.
48. Doggrell, S.A., Is RGS-2 a new drug development target in cardiovascular disease? Expert Opin Ther Targets, 2004. 8(4): p. 355-8.
49. Bowden, N.A., R.J. Scott, and P.A. Tooney, Altered expression of regulator of G-protein signalling 4 (RGS4) mRNA in the superior temporal gyrus in schizophrenia. Schizophr Res, 2007. 89(1-3): p. 165-8.
50. So, H.C., et al., An association study of RGS4 polymorphisms with clinical phenotypes of schizophrenia in a Chinese population. Am J Med Genet B Neuropsychiatr Genet, 2008. 147B(1): p. 77-85.
51. Han, M.H., et al., Brain region specific actions of regulator of G protein signaling 4 oppose morphine reward and dependence but promote analgesia. Biol Psychiatry, 2010. 67(8): p. 761-9.
52. Neubig, R.R. and D.P. Siderovski, Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov, 2002. 1(3): p. 187-97.
53. Young, K.H., et al., Yeast-based screening for inhibitors of RGS proteins. Methods Enzymol, 2004. 389: p. 277-301.
54. Selvin, P.R., The renaissance of fluorescence resonance energy transfer. Nat Struct Biol, 2000. 7(9): p. 730-4.
55. Leifert, W.R., et al., Measurement of heterotrimeric G-protein and regulators of G-protein signaling interactions by time-resolved fluorescence resonance energy transfer. Anal Biochem, 2006. 355(2): p. 201-12.
56. Roman, D.L., S. Ota, and R.R. Neubig, Polyplexed flow cytometry protein interaction assay: a novel high-throughput screening paradigm for RGS protein inhibitors. J Biomol Screen, 2009. 14(6): p. 610-9.
57. Kimple, A.J., et al., The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Galpha-interaction face. Biochim Biophys Acta, 2007. 1774(9): p. 1213-20.
58. Jin, Y., et al., Structure-based design, synthesis, and pharmacologic evaluation of peptide RGS4 inhibitors. J Pept Res, 2004. 63(2): p. 141-6.
59. Roof, R.A., et al., Mechanism of action and structural requirements of constrained peptide inhibitors of RGS proteins. Chem Biol Drug Des, 2006. 67(4): p. 266-74.
60. Blazer, L.L., et al., Reversible, allosteric small-molecule inhibitors of regulator of G protein signaling proteins. Mol Pharmacol, 2010. 78(3): p. 524-33.
61. Wang, Y., et al., Identification of peptides that inhibit regulator of G protein signaling 4 function. Pharmacology, 2008. 82(2): p. 97-104.
62. Skiba, N.P., et al., The alpha-helical domain of Galphat determines specific interaction with regulator of G protein signaling 9. J Biol Chem, 1999. 274(13): p. 8770-8.
63. 黃慶鑫, 阿拉伯芥G蛋白質訊息傳遞系統和G蛋白質訊息調節蛋白質
(AtRGS1)分子機制探討. 2008, 國立台灣大學.
64. 陳逸奇, 以螢光修飾之RGS發展新的Ga蛋白質相關疾病之藥物篩選策略. 2008, 國立台灣大學.
65. 謝昌泓, 以結構為基礎建構RGS藥物之篩選平台. 2009, 國立台灣大學.
66. Popov, S., et al., The regulators of G protein signaling (RGS) domains of RGS4, RGS10, and GAIP retain GTPase activating protein activity in vitro. Proc Natl Acad Sci U S A, 1997. 94(14): p. 7216-20.
67. Skiba, N.P., H. Bae, and H.E. Hamm, Mapping of effector binding sites of transducin alpha-subunit using G alpha t/G alpha i1 chimeras. J Biol Chem, 1996. 271(1): p. 413-24.
68. Yang, C.S., et al., Conformational changes at the carboxyl terminus of Galpha occur during G protein activation. J Biol Chem, 1999. 274(4): p. 2379-85.
69. Dhanasekaran, N., et al., Mapping of the carboxyl terminus within the tertiary structure of transducin's alpha subunit using the heterobifunctional cross-linking reagent, 125I-N-(3-iodo-4-azidophenylpropionamido-S-(2-thiopyridyl) cysteine. J Biol Chem, 1988. 263(34): p. 17942-50.
70. He, W., C.W. Cowan, and T.G. Wensel, RGS9, a GTPase accelerator for phototransduction. Neuron, 1998. 20(1): p. 95-102.
71. Higashijima, T., et al., The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J Biol Chem, 1987. 262(2): p. 752-6.
72. 黃柏勳, 阿拉伯芥與哺乳類動物之G-protein訊息系統相關蛋白質具有物種間交互作用. 2009, 國立台灣大學.
73. Srinivasa, S.P., et al., Mechanism of RGS4, a GTPase-activating protein for G protein alpha subunits. J Biol Chem, 1998. 273(3): p. 1529-33.
74. Simon, M.I., M.P. Strathmann, and N. Gautam, Diversity of G proteins in signal transduction. Science, 1991. 252(5007): p. 802-8.
75. Clapham, D.E. and E.J. Neer, G protein beta gamma subunits. Annu Rev Pharmacol Toxicol, 1997. 37: p. 167-203.
76. Tesmer, J.J., Chapter 4 structure and function of regulator of G protein signaling homology domains. Prog Mol Biol Transl Sci, 2009. 86: p. 75-113.
77. Tu, Y., et al., Palmitoylation of a conserved cysteine in the regulator of G
protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10. J Biol Chem, 1999. 274(53): p. 38260-7.
78. Tesmer, J.J., Structure and function of regulator of G protein signaling homology domains. Prog Mol Biol Transl Sci, 2009. 86: p. 75-113.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46552-
dc.description.abstractG蛋白質耦合受器與異三元體G蛋白質系統是哺乳動物最常使用的訊息傳遞系統之一,異三元體G蛋白質系統由Gα與Gβγ次單元所構成,負責將G蛋白質耦合受器所接收到的胞外訊息往胞內傳遞。其中,Gα次單元具備水解GTP的能力,G蛋白質耦合受器的活化將促使Gα次單元與GTP結合,開啟下游訊息路徑;而當Gα次單元將GTP水解為GDP,則會使異三元體G蛋白質系統回到不活化的基態。
細胞中有一類關鍵性的蛋白質負責調控G蛋白質系統訊息傳遞,稱為Regulator of G-protein signaling (RGS),RGS能夠催化Gα水解GTP的速度,進而終結訊息傳遞。RGS在訊息傳遞中扮演的角色使其成為藥物標靶的可能性於近幾年來受到高度重視,然而由於其活性測定上的困難使研究受到限制,雖然可能的RGS藥物篩選平台相繼被提出,至今仍未出現任何RGS藥物。
本研究利用可大量表現的Gα嵌合蛋白質與螢光修飾蛋白質的技術,發展一可簡便偵測RGS-Gα交互作用的分析方式,並以之建立RGS9與RGS4的藥物或調節因子篩選平台。在RGS9篩選平台方面,以螢光標定之Gα嵌合蛋白質偵測與RGS9交互作用,並使用96孔微量滴定盤與螢光ELISA操作大量化分析,已成功達到17%的報導訊號;RGS4篩選平台則利用螢光標定的RGS4偵測與Gαi1的交互作用,以數個RGS4內源Cysteine變異蛋白質成功辨識以往訊號中背景雜訊來源為Cys148上的螢光標定,藉由剔除背景來源,並於交互作用介面引入標定位置,希望發展報導效率更佳之變異蛋白質。此外,藉由分析序列中數個Cysteine發現Cys95提供結構上穩定性,對蛋白質表現量不可或缺;另外, Cys148可能是RGS4異位調控中的關鍵位置之一。
zh_TW
dc.description.abstractHeterotrimeric G-protein system composed by Gα and Gβγ subunits is the most prevalent cellular signaling molecule, mediating the delivering of extracellular signal from G-protein coupled receptor (GPCR) to intracellular effectors. The ligand bound GPCR activates G-proteins and switches on the signaling cascade via the GTP bound form Gα subunit. The signaling event terminates till the GTP hydrolysis catalyzed by the intrinsic GTPase activity of Gα, rendering G-protein system return to ground state and ready for the next signal.
The regulator of G-protein signaling (RGS) belongs to GTPase accelerating protein (GAP) family, which regulates signaling events downstream GPCR by promoting the GTP hydrolysis of Gα, therefore, reducing the duration and amplitude of activated signaling. The critical role on G-protein signaling implies RGS as a potential candidate for drug targeting, which attracts increasing professional and academic attention in last decade. However, the difficulty on analyzing RGS activity limits the progress of RGS physiologic research. There is no clinical RGS drug until today.
In this study, we focused on development of RGS4 and RGS9 drug screening platform based on highly expressible chimeric and fluorescently labeled proteins. In RGS9 part, we used a fluorescently modified chimeric Gα to probe the interaction with RGS9. By using 96-well plate and fluorescent ELISA, high throughput, highly sensitive, real-time monitoring of Gαt-RGS9 interaction could be achieved. Also, we developed RGS4- Gαi1 interaction assay via fluorescently labeled RGS4. In this part, through analysis of cysteines in RGS4 sequence, we successfully identified the background labeling came from Cys148 which also played a role in allosteric regulation of RGS4. Furthermore, Cys95 would be an essential residue for protein stability. Based on these results, we introduced few labeling sites on RGS4- Gαi1 interface to construct mutants for signaling optimization.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:15:12Z (GMT). No. of bitstreams: 1
ntu-100-R98b47406-1.pdf: 6094124 bytes, checksum: 818b0beb7bb7e3a1c021ab35b6617674 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents一、 緒論................................................................................................................ 1
1.1 G蛋白耦合受器與G蛋白質系統 .......................................................... 1
1.1.1 G蛋白質耦合受器 ....................................................................... 1
1.1.2 G蛋白質系統與訊息傳遞 ........................................................... 1
1.1.3 G蛋白質下游因子 ....................................................................... 4
1.2 RGS ........................................................................................................... 5
1.2.1 RGS的分類 .................................................................................. 6
1.2.2 RGS的結構與傶化機制 .............................................................. 8
1.2.3 RGS的生理功能與在疾病中的角色 ........................................ 10
1.2.4 GAP之外的生理角色 ................................................................ 12
1.2.5 RGS藥物 .................................................................................... 12
1.3 RGS藥物篩選平台 ................................................................................ 13
1.3.1 酵母菌雙雜合系統 ..................................................................... 13
1.3.2 時間解析式螢光共振能量轉移 ................................................. 14
1.3.3 細胞層次大量篩選平台 ............................................................. 15
1.3.4 流式細胞儀式篩選平台 ............................................................. 15
1.3.5 各平台之優缺點分析 ................................................................. 15
1.4 研究動機.................................................................................................. 19
1.5 研究目標.................................................................................................. 19
1.5.1 研究架構...................................................................................... 20
1.5.2 本研究欲達成之項目 ................................................................. 20
二、 材料與方法 ................................................................................................. 22
2.1 藥品及材料 ............................................................................................. 22
2.2 質體建構.................................................................................................. 23
2.2.1 RGS4功能性區塊及Cysteine變異蛋白質建構 ...................... 23
2.3 蛋白質表現與純化 ................................................................................. 24
2.3.1 Gα表現 ....................................................................................... 24
2.3.2 RGS表現 .................................................................................... 25
iii
2.3.3 蛋白質純化 ................................................................................. 25
2.4 Lucifer yellow標定與標定蛋白質純化 ................................................ 26
2.4.1 Lucifer yellow標定 .................................................................... 26
2.4.2 陰離子交換樹脂純化 ................................................................. 26
2.5 Gα功能性分析 ....................................................................................... 27
2.5.1 AlF4-活化功能分析 ..................................................................... 27
2.5.2 BODIPY TR-GTP水解活性分析 ............................................. 27
2.6 RGS功能性分析 .................................................................................... 28
2.6.1 GAP活性分析 ............................................................................ 28
2.6.2 LY標定蛋白質交互作用分析(LYPIA)..................................... 28
2.6.3 螢光ELISA操作LYPIA分析 ................................................. 29
三、 實驗結果...................................................................................................... 30
3.1 以螢光標定之Chi6偵測蛋白質間交互作用 ....................................... 30
3.1.1 重組蛋白質表現與純化 ............................................................. 30
3.1.2 AlF4-活化功能分析測詴Chi6b是否具正常活性 .................... 33
3.1.3 以Lucifer yellow對Chi6b進行標定與純化 ........................... 35
3.1.4 以Lucifer yellow標定之Chib偵測與RGS9之作用關係 .... 37
3.1.5 96孔微量滴定盤大量化可行性測詴 ........................................ 38
3.1.6 96孔盤搭配螢光ELISA分析Chi6與RGS9之交互關係 .... 41
3.2 以螢光標定之RGS來偵測蛋白質間交互作用 ................................... 43
3.2.1 RGS4序列及結構分析 .............................................................. 43
3.2.2 內源Cysteine變異蛋白質表現與純化 ..................................... 46
3.2.3 Lucifer yellow標定與純化 ........................................................ 47
3.2.4 內源Cysteine變異蛋白質LYPIA分析 ................................... 50
3.2.5 內源Cysteine變異蛋白質GAP活性分析 .............................. 51
3.2.6 最佳標定形式R4之設計與建構 ............................................... 53
四、 討論.............................................................................................................. 55
4.1 以嵌合蛋白質作為藥物或調節因子篩選工具 ..................................... 55
4.2 以螢光標定RGS作為藥物或調節因子篩選工具 ............................... 56
4.3 RGS4結構中的cysteine ........................................................................ 56
4.4 RGS4的異位調控機制 .......................................................................... 57
4.5 利用LY標定之dR4(S148C)報導RGS4與其調控蛋白質交互關係 58
五、 結論.............................................................................................................. 60
六、 未來展望...................................................................................................... 61
七、 參考文獻...................................................................................................... 62
dc.language.isozh-TW
dc.subjectRGS異位調控zh_TW
dc.subjectG蛋白質系統zh_TW
dc.subjectRGSzh_TW
dc.subjectRGS調節因子zh_TW
dc.subjectRGS藥物篩選zh_TW
dc.subject螢光標定zh_TW
dc.subjectG-alpha嵌合蛋白質zh_TW
dc.subject蛋白質交互作用zh_TW
dc.subjectRGS allosteric regulationen
dc.subjectG-protein systemen
dc.subjectregulator of G-protein signaling (RGS)en
dc.subjectRGS modulatoren
dc.subjectRGS drug screeningen
dc.subjectfluorescent labelingen
dc.subjectchimeric G-alphaen
dc.subjectprotein-protein interactionen
dc.title以螢光修飾與嵌合蛋白質發展RGS調節因子篩選平台zh_TW
dc.titleDevelopment of RGS Modulator Screening Platform Based on Fluorescently Labeled and Chimeric Proteinsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁博煌(Po-Huang Liang),許瑞祥(Ruey-Shyang Hseu),李昆達(Kung-Ta Lee),黃慶璨(Ching-Tsan Huang)
dc.subject.keywordG蛋白質系統,RGS,RGS調節因子,RGS藥物篩選,螢光標定,G-alpha嵌合蛋白質,蛋白質交互作用,RGS異位調控,zh_TW
dc.subject.keywordG-protein system,regulator of G-protein signaling (RGS),RGS modulator,RGS drug screening,fluorescent labeling,chimeric G-alpha,protein-protein interaction,RGS allosteric regulation,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2011-08-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved