Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46548Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡志宏 | |
| dc.contributor.author | Jian-Ming Lu | en |
| dc.contributor.author | 盧建銘 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:14:58Z | - |
| dc.date.available | 2012-08-05 | |
| dc.date.copyright | 2010-08-05 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-21 | |
| dc.identifier.citation | [1] P. Belanovic, D. Valerio, A. Paier, T. Zemen, F. Ricciato and C. Mecklenbrauker,
“On wireless links for vehicle to infrastructure communications,” IEEE Transactions on Vehicular Technology, vol. 59, no. 1, Jan. 2010. [2] H. Holma and A. Toskala, WCDMA for UMTS: Radio Access for Third Generation Mobile Communications. New York: Wiley, 2000. [3] Family of standards for Wireless Access in Vehicular Environments (WAVE), IEEE 1609. [4] “IEEE trial-use standard for wireless access in vehicular environments(WAVE) – multi-channel operation,” IEEE Std 1609.4-2006, November 2006. [5] The CAMP vehicle safety communications consortium, Vehicle safety communications project task 3 final report: Identify intelligent vehicle safety applications enabled by DSRC, 2005. [6] P. Belanovi’c and T. Zemen, “An entropy based model for system-level downlink capacity requirements in V2R telematic Systems,” in Proc. of IEEE Workshop on Automotive Networking and Applications (AutoNet 2007), November 2007. [7] T. Murray, T. Murray, M. Cojocari, and H. FU, “Measuring the Performance of IEEE 802.11p Using ns-2 Simulator for Vehicular Networks ,” in Proc. of IEEE International Conference in Electro/Information Technology, 2008. [8] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle safety messaging in DSRC,” in Proceedings of the first ACM workshop on Vehicular ad hoc networks, pages 19–28. ACM Press, 2004. [9] M. Raya, J. P. Hubaux, “The Security of Vehicular Ad Hoc Networks,” in Proc. of SASN05, Alexandria, Virginia, USA, 2005. [10] Z. Wang, M. Hassan, “How Much of DSRC is Available for Non-safety Use?”, in Proc. of VANET08, San Francisco, CA, USA, 2008. [11] D. Jiang, V. Talieal, A. Meier, and W. Holfelder, “Design of 5.9 GHZ DSRC-Based Vehicular Safety Communication,” IEEE Wireless Communications, pp. 36-43, Oct. 2006. [12] M. Kihl, L. Sichitiu, “Inter-Vehicle Communication Systems: A Survey,” IEEE Communications Surveys & Tutorials , 2nd Quarter 2008. [13] T. Munaka, Y. Ito, and S. Kubota, “A Study of Info-communication Technologies Required in ITS Networks,” in Proc. of Symposium on Applications and the Internet-Workshops, 2001. [14] “Draft amendment to wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Wireless access in vehicular environments.” IEEE P802.11ptm /D1.1,January 2005. [15] “IEEE trial-use standard for wireless access in vehicular environments (WAVE) – networking services,” IEEE Std 1609.3-2007, April 2007. [16] Vehicle Safety Communications in the United States, http://www-nrd.nhtsa.dot.gov/pdf/esv/esv20/07-0010-O.pdf [17]P. Papadimitratos, A. La Fortelle, K. Evenssen, R. Brignolo and S. Cosenza,“Vehicular Communication Systems: Enabling Technologies, Applications, and Future Outlook on Intelligent Transportation,” IEEE Communications Magazine, November 2009. [18]K. Furstenberg, “A New European Approach for Intersection Safety - The EC-Project INTERSAFE,” in Proc. of IEEE Conf. Intelligent Transportation Sys., Sept. 2005. [19]INTERSAFE-2;http://www.intersafe-2.eu [20]M. Yamamoto et al., “Development of Vehicle-Infrastructure Cooperative System-Field Operational Test of Hiroshima DSSS,” in Proc. of ITS World Congress, Nov. 2008. [21] D. Valerio, F. Ricciato, P. Belanovi’c, and T. Zemen, “UMTS on the Road: Broadcasting Intelligent Road Safety Information via MBMS,” in Proc. of IEEE 67th Vehicular Technology Conference VTC2008-Spring, May 2008. [22] Car to Car Communication Consortium; http://www.car-2car.org/ [23] 3GPP, “High speed downlink packet access (HSDPA)⎯overall description,” TS 25.308 , 3rd Generation Parnership Proejct (3GPP),,Mar. 2003. [24] 簡俊能,王銘亨和兵界力, “高速公路隧道群(區)車流及行車事故特 性分析,” 道路交通安全與執法研討會,307~321頁,民國88年6月。 [25] Y. Zhao, “Mobile Phone Location Determination and Its Impact on Intelligent Transportation Systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 1, no. 1, March 2000. [26] L.M. Correia, et.al, “Performance Analysis of UMTS/HSPA at the Cellular Level,” in Proc. of IEEE 69th Vehicular Technology Conference, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46548 | - |
| dc.description.abstract | 在未來,具無線通訊功能的車載系統是智慧型運輸系統必要的一環。它可用來避免交通意外的發生時所需要付出的社會成本,還可以用來控管車流量,來避免交通阻塞。現今發展的行動通訊系統,如3.5G的HSDPA(High Speed Downlink Packet Access)系統以及DSRC(Dedicated Short Range Communication)都可以用來實行,但由於不同的系統有不同的網路容量和服務範圍,因此有必要加以整合運用。
在現今3.5G網路覆蓋率高的情境下,本論文乃提出一種複合式系統,選擇在都市區佈建DSRC系統而在郊區使用原本已佈建3.5G系統。由於DSRC進入到HSDPA網路時,車子原本使用的應用服務會中斷,因為在連上HSDPA網路時,DSRC網路已中斷 。 因此本論文先去試算3.5G的網路瓶頸所在後,提供一套演算法去提升3.5G網路的最大服務車輛數目並使應用服務可以盡量完整使用,然後我們將去探討在兩系統交接的情形,並提出使用一個稱為D2H的可調式演算法提升3.5G網路的最大服務車輛數目。在此條件下我們去模擬不同的車速在不同的車流量下的系統交接情況,模擬結果包括平均換手的時間與換手失敗率,並可經由模擬結果去分析在8車道、6車道、4車道等不同交通環境下,車流量的大小會造成系統交接失敗率的影響。 | zh_TW |
| dc.description.abstract | In the future, a wireless vehicle communication system is necessary for intelligent transportation systems link. It can be used to avoid the occurrence of traffic accidents required to pay the social costs and be used for control traffic flow and also avoid traffic congestion. Current development of mobile communication systems such as 3.5G in the HSDPA (High Speed Downlink Packet Access) system and the DSRC (Dedicated Short Range Communication) can be used to implement, but because different systems have different network capacity and services, so the need to integrate.
In today's 3.5G high network coverage environment of wireless network, this master thesis propose a hybrid system, select the deployment in urban areas using DSRC system and using 3.5G systems in rural area. Because of roaming form DSRC to HSPDA the application will be interrupted. Therefore this master thesis evaluates the bottleneck of 3.5G network’s capacity and provides an algorithm to improve the number of vehicle that 3.5G networks can serve and make full use of application as much as possible., then we're going to explore the transfer of the two systems situation, and proposes to use a adaptive algorithm called D2H to enhance the maximum number of service vehicles in 3.5G network. In this condition, we have the speed to simulate different traffic flow in the system under different transfer conditions, the simulation results including the average handoff time and the handoff failure rate, and can go through the simulation results of 8 Drive, 6 Drive, 4 Drive under various traffic conditions, traffic flow will cause the size of the handover failure rate of the system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:14:58Z (GMT). No. of bitstreams: 1 ntu-99-R97942106-1.pdf: 2336572 bytes, checksum: 3a5f640af27e12a9abb2fa9329ea5776 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………………………I
摘要…………………………………………………………………………………...II ABSTRACT…………………………...…………………………………………….III 目錄…………………………………………………………………………………..IV 圖目錄………………………………………………………………………………..VI 表目錄……………………………………………………………………………...VIII 第一章 緒論................................................................................................................1 1.1車載通訊發展背景和技術選項......................................................................1 1.2相關文獻回顧..................................................................................................3 1.3 研究問題與目的.............................................................................................4 第二章 車載通訊架構與演算法................................................................................6 2.1系統架構..........................................................................................................6 2.1.1 DSRC網路架構...................................................................................7 2.1.2 HSDPA網路架構................................................................................11 2.2 模擬模型.......................................................................................................12 2.2.1 DSRC網路模擬模型..........................................................................12 2.2.2 HSDPA網路模擬模型.......................................................................17 2.3系統容量計算................................................................................................19 2.4 系統交接流程及封包過濾機制...................................................................21 2.5 車機端裝置運作流程圖...............................................................................23 2.6伺服器端裝置運作流程圖............................................................................24 第三章 演算法與模擬實驗......................................................................................26 3.1 理論數值分析...............................................................................................26 3.2 容量測試.......................................................................................................27 3.3 演算法描述………………………………………………………………...28 3.3.1 伺服器端的D2H可調式演算法……………………………………29 3.3.2 車機端的D2H可調式演算法……………………………………....30 3.4 不同情境的效能模擬...................................................................................33 3.4.1 DSRC網路效能模擬..............................................................................33 3.4.2 3.5G網路效能模擬................................................................................37 3.5 交接與過濾效能模擬...................................................................................41 第四章 結論及未來工作..........................................................................................51 4.1 結論..............................................................................................................51 4.2 未來研究方向...............................................................................................52 附錄一 DSRC網路中不同車道與車距下的車輛數目表……………………… 53 附錄二 在3.5G網路下每sector不同車輛的頻寬使用率與封包產生率比較表.54 參考文獻......................................................................................................................56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 智慧型傳輸系統 | zh_TW |
| dc.subject | 車載通訊 | zh_TW |
| dc.subject | telematic | en |
| dc.subject | DSRC | en |
| dc.title | 以DSRC及3.5G網路共同支援車用通訊之可行性評估 | zh_TW |
| dc.title | A Feasibility Study on Telematic Communications Jointly Supported by DSRC and 3.5G Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝宏昀,馮輝文,黎明富 | |
| dc.subject.keyword | 車載通訊,智慧型傳輸系統, | zh_TW |
| dc.subject.keyword | telematic,DSRC, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| Appears in Collections: | 電信工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-99-1.pdf Restricted Access | 2.28 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
