Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46548
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡志宏
dc.contributor.authorJian-Ming Luen
dc.contributor.author盧建銘zh_TW
dc.date.accessioned2021-06-15T05:14:58Z-
dc.date.available2012-08-05
dc.date.copyright2010-08-05
dc.date.issued2010
dc.date.submitted2010-07-21
dc.identifier.citation[1] P. Belanovic, D. Valerio, A. Paier, T. Zemen, F. Ricciato and C. Mecklenbrauker,
“On wireless links for vehicle to infrastructure communications,” IEEE
Transactions on Vehicular Technology, vol. 59, no. 1, Jan. 2010.
[2] H. Holma and A. Toskala, WCDMA for UMTS: Radio Access for Third
Generation Mobile Communications. New York: Wiley, 2000.
[3] Family of standards for Wireless Access in Vehicular Environments (WAVE),
IEEE 1609.
[4] “IEEE trial-use standard for wireless access in vehicular environments(WAVE) –
multi-channel operation,” IEEE Std 1609.4-2006, November 2006.
[5] The CAMP vehicle safety communications consortium, Vehicle safety
communications project task 3 final report: Identify intelligent vehicle safety applications enabled by DSRC, 2005.
[6] P. Belanovi’c and T. Zemen, “An entropy based model for system-level downlink
capacity requirements in V2R telematic Systems,” in Proc. of IEEE Workshop on Automotive Networking and Applications (AutoNet 2007), November 2007.
[7] T. Murray, T. Murray, M. Cojocari, and H. FU, “Measuring the Performance of
IEEE 802.11p Using ns-2 Simulator for Vehicular Networks ,” in Proc. of IEEE
International Conference in Electro/Information Technology, 2008.
[8] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle safety messaging in
DSRC,” in Proceedings of the first ACM workshop on Vehicular ad hoc networks, pages 19–28. ACM Press, 2004.
[9] M. Raya, J. P. Hubaux, “The Security of Vehicular Ad Hoc Networks,” in Proc.
of SASN05, Alexandria, Virginia, USA, 2005.

[10] Z. Wang, M. Hassan, “How Much of DSRC is Available for Non-safety
Use?”, in Proc. of VANET08, San Francisco, CA, USA, 2008.

[11] D. Jiang, V. Talieal, A. Meier, and W. Holfelder, “Design of 5.9 GHZ
DSRC-Based Vehicular Safety Communication,” IEEE Wireless
Communications, pp. 36-43, Oct. 2006.
[12] M. Kihl, L. Sichitiu, “Inter-Vehicle Communication Systems: A Survey,” IEEE
Communications Surveys & Tutorials , 2nd Quarter 2008.
[13] T. Munaka, Y. Ito, and S. Kubota, “A Study of Info-communication
Technologies Required in ITS Networks,” in Proc. of Symposium on
Applications and the Internet-Workshops, 2001.
[14] “Draft amendment to wireless LAN medium access control (MAC) and physical
layer (PHY) specifications: Wireless access in vehicular environments.” IEEE
P802.11ptm /D1.1,January 2005.
[15] “IEEE trial-use standard for wireless access in vehicular environments
(WAVE) – networking services,” IEEE Std 1609.3-2007, April 2007.
[16] Vehicle Safety Communications in the United States,
http://www-nrd.nhtsa.dot.gov/pdf/esv/esv20/07-0010-O.pdf
[17]P. Papadimitratos, A. La Fortelle, K. Evenssen, R. Brignolo and S.
Cosenza,“Vehicular Communication Systems: Enabling Technologies,
Applications, and Future Outlook on Intelligent Transportation,” IEEE
Communications Magazine, November 2009.
[18]K. Furstenberg, “A New European Approach for Intersection Safety - The
EC-Project INTERSAFE,” in Proc. of IEEE Conf. Intelligent Transportation
Sys., Sept. 2005.
[19]INTERSAFE-2;http://www.intersafe-2.eu
[20]M. Yamamoto et al., “Development of Vehicle-Infrastructure Cooperative
System-Field Operational Test of Hiroshima DSSS,” in Proc. of ITS World
Congress, Nov. 2008.
[21] D. Valerio, F. Ricciato, P. Belanovi’c, and T. Zemen, “UMTS on the Road:
Broadcasting Intelligent Road Safety Information via MBMS,” in Proc. of
IEEE 67th Vehicular Technology Conference VTC2008-Spring, May 2008.
[22] Car to Car Communication Consortium; http://www.car-2car.org/
[23] 3GPP, “High speed downlink packet access (HSDPA)⎯overall description,” TS
25.308 , 3rd Generation Parnership Proejct (3GPP),,Mar. 2003.
[24] 簡俊能,王銘亨和兵界力, “高速公路隧道群(區)車流及行車事故特
性分析,” 道路交通安全與執法研討會,307~321頁,民國88年6月。
[25] Y. Zhao, “Mobile Phone Location Determination and Its Impact on Intelligent
Transportation Systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 1, no. 1, March 2000.
[26] L.M. Correia, et.al, “Performance Analysis of UMTS/HSPA at the Cellular
Level,” in Proc. of IEEE 69th Vehicular Technology Conference, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46548-
dc.description.abstract在未來,具無線通訊功能的車載系統是智慧型運輸系統必要的一環。它可用來避免交通意外的發生時所需要付出的社會成本,還可以用來控管車流量,來避免交通阻塞。現今發展的行動通訊系統,如3.5G的HSDPA(High Speed Downlink Packet Access)系統以及DSRC(Dedicated Short Range Communication)都可以用來實行,但由於不同的系統有不同的網路容量和服務範圍,因此有必要加以整合運用。
在現今3.5G網路覆蓋率高的情境下,本論文乃提出一種複合式系統,選擇在都市區佈建DSRC系統而在郊區使用原本已佈建3.5G系統。由於DSRC進入到HSDPA網路時,車子原本使用的應用服務會中斷,因為在連上HSDPA網路時,DSRC網路已中斷 。 因此本論文先去試算3.5G的網路瓶頸所在後,提供一套演算法去提升3.5G網路的最大服務車輛數目並使應用服務可以盡量完整使用,然後我們將去探討在兩系統交接的情形,並提出使用一個稱為D2H的可調式演算法提升3.5G網路的最大服務車輛數目。在此條件下我們去模擬不同的車速在不同的車流量下的系統交接情況,模擬結果包括平均換手的時間與換手失敗率,並可經由模擬結果去分析在8車道、6車道、4車道等不同交通環境下,車流量的大小會造成系統交接失敗率的影響。
zh_TW
dc.description.abstractIn the future, a wireless vehicle communication system is necessary for intelligent transportation systems link. It can be used to avoid the occurrence of traffic accidents required to pay the social costs and be used for control traffic flow and also avoid traffic congestion. Current development of mobile communication systems such as 3.5G in the HSDPA (High Speed Downlink Packet Access) system and the DSRC (Dedicated Short Range Communication) can be used to implement, but because different systems have different network capacity and services, so the need to integrate.
In today's 3.5G high network coverage environment of wireless network, this master thesis propose a hybrid system, select the deployment in urban areas using DSRC system and using 3.5G systems in rural area. Because of roaming form DSRC to HSPDA the application will be interrupted. Therefore this master thesis evaluates the bottleneck of 3.5G network’s capacity and provides an algorithm to improve the number of vehicle that 3.5G networks can serve and make full use of application as much as possible., then we're going to explore the transfer of the two systems situation, and proposes to use a adaptive algorithm called D2H to enhance the maximum number of service vehicles in 3.5G network. In this condition, we have the speed to simulate different traffic flow in the system under different transfer conditions, the simulation results including the average handoff time and the handoff failure rate, and can go through the simulation results of 8 Drive, 6 Drive, 4 Drive under various traffic conditions, traffic flow will cause the size of the handover failure rate of the system.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:14:58Z (GMT). No. of bitstreams: 1
ntu-99-R97942106-1.pdf: 2336572 bytes, checksum: 3a5f640af27e12a9abb2fa9329ea5776 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝……………………………………………………………………………………I
摘要…………………………………………………………………………………...II
ABSTRACT…………………………...…………………………………………….III
目錄…………………………………………………………………………………..IV
圖目錄………………………………………………………………………………..VI
表目錄……………………………………………………………………………...VIII
第一章 緒論................................................................................................................1
1.1車載通訊發展背景和技術選項......................................................................1
1.2相關文獻回顧..................................................................................................3
1.3 研究問題與目的.............................................................................................4
第二章 車載通訊架構與演算法................................................................................6
2.1系統架構..........................................................................................................6
2.1.1 DSRC網路架構...................................................................................7
2.1.2 HSDPA網路架構................................................................................11
2.2 模擬模型.......................................................................................................12
2.2.1 DSRC網路模擬模型..........................................................................12
2.2.2 HSDPA網路模擬模型.......................................................................17
2.3系統容量計算................................................................................................19
2.4 系統交接流程及封包過濾機制...................................................................21
2.5 車機端裝置運作流程圖...............................................................................23
2.6伺服器端裝置運作流程圖............................................................................24
第三章 演算法與模擬實驗......................................................................................26
3.1 理論數值分析...............................................................................................26
3.2 容量測試.......................................................................................................27
3.3 演算法描述………………………………………………………………...28
3.3.1 伺服器端的D2H可調式演算法……………………………………29
3.3.2 車機端的D2H可調式演算法……………………………………....30
3.4 不同情境的效能模擬...................................................................................33
3.4.1 DSRC網路效能模擬..............................................................................33
3.4.2 3.5G網路效能模擬................................................................................37
3.5 交接與過濾效能模擬...................................................................................41
第四章 結論及未來工作..........................................................................................51
4.1 結論..............................................................................................................51
4.2 未來研究方向...............................................................................................52
附錄一 DSRC網路中不同車道與車距下的車輛數目表……………………… 53
附錄二 在3.5G網路下每sector不同車輛的頻寬使用率與封包產生率比較表.54
參考文獻......................................................................................................................56
dc.language.isozh-TW
dc.subject智慧型傳輸系統zh_TW
dc.subject車載通訊zh_TW
dc.subjecttelematicen
dc.subjectDSRCen
dc.title以DSRC及3.5G網路共同支援車用通訊之可行性評估zh_TW
dc.titleA Feasibility Study on Telematic Communications Jointly Supported by DSRC and 3.5G Networksen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝宏昀,馮輝文,黎明富
dc.subject.keyword車載通訊,智慧型傳輸系統,zh_TW
dc.subject.keywordtelematic,DSRC,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2010-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
2.28 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved