Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorKai-Li Suen
dc.contributor.author蘇凱立zh_TW
dc.date.accessioned2021-06-15T05:14:35Z-
dc.date.available2016-09-21
dc.date.copyright2011-09-21
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citationReferences
Antebi, A., Norris, C.R., Hedgecock, E.M., and Garriga, G. (1997). Cell and Growth Cone Migrations.
Barker, N. (2008). The canonical Wnt/beta-catenin signalling pathway. Methods in molecular biology (Clifton, NJ 468, 5-15.
Blelloch, R., Anna-Arriola, S.S., Gao, D., Li, Y., Hodgkin, J., and Kimble, J. (1999). The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Developmental biology 216, 382-393.
Blelloch, R., and Kimble, J. (1999). Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature 399, 586-590.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Cabello, J., Neukomm, L.J., Gunesdogan, U., Burkart, K., Charette, S.J., Lochnit, G., Hengartner, M.O., and Schnabel, R. The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. PLoS biology 8, e1000297.
Cadigan, K.M., and Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes & development 11, 3286-3305.
Chambers, A.F., Groom, A.C., and MacDonald, I.C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature reviews 2, 563-572.
Chilton, J.K. (2006). Molecular mechanisms of axon guidance. Developmental biology 292, 13-24.
Colavita, A., and Culotti, J.G. (1998). Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Developmental biology 194, 72-85.
Colavita, A., Krishna, S., Zheng, H., Padgett, R.W., and Culotti, J.G. (1998). Pioneer axon guidance by UNC-129, a C. elegans TGF-beta. Science (New York, NY 281, 706-709.
Culotti, J.G., and Merz, D.C. (1998). DCC and netrins. Current opinion in cell biology 10, 609-613.
Dorsky, R.I., Moon, R.T., and Raible, D.W. (1998). Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370-373.
Drescher, U., Kremoser, C., Handwerker, C., Loschinger, J., Noda, M., and Bonhoeffer, F. (1995). In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359-370.
Forrester, W.C., Kim, C., and Garriga, G. (2004). The Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration. Genetics 168, 1951-1962.
Gillitzer, R., and Goebeler, M. (2001). Chemokines in cutaneous wound healing. Journal of leukocyte biology 69, 513-521.
Goldstein, B., Takeshita, H., Mizumoto, K., and Sawa, H. (2006). Wnt signals can function as positional cues in establishing cell polarity. Developmental cell 10, 391-396.
Gordon, M.D., and Nusse, R. (2006). Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. The Journal of biological chemistry 281, 22429-22433.
Green, J.L., Inoue, T., and Sternberg, P.W. (2007). The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway. Development (Cambridge, England) 134, 4053-4062.
Gumienny, T.L., Brugnera, E., Tosello-Trampont, A.C., Kinchen, J.M., Haney, L.B., Nishiwaki, K., Walk, S.F., Nemergut, M.E., Macara, I.G., Francis, R., et al. (2001). CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27-41.
Hedgecock, E.M., Culotti, J.G., and Hall, D.H. (1990). The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61-85.
Hedgecock, E.M., Culotti, J.G., Hall, D.H., and Stern, B.D. (1987). Genetics of cell and axon migrations in Caenorhabditis elegans. Development (Cambridge, England) 100, 365-382.
Herman, M.A., Vassilieva, L.L., Horvitz, H.R., Shaw, J.E., and Herman, R.K. (1995). The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell 83, 101-110.
Hilliard, M.A., and Bargmann, C.I. (2006). Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Developmental cell 10, 379-390.
Hirai, H., Maru, Y., Hagiwara, K., Nishida, J., and Takaku, F. (1987). A novel putative tyrosine kinase receptor encoded by the eph gene. Science (New York, NY 238, 1717-1720.
Hsieh, J.C., Rattner, A., Smallwood, P.M., and Nathans, J. (1999). Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proceedings of the National Academy of Sciences of the United States of America 96, 3546-3551.
Ishii, N., Wadsworth, W.G., Stern, B.D., Culotti, J.G., and Hedgecock, E.M. (1992). UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873-881.
Keller, R. (2005). Cell migration during gastrulation. Current opinion in cell biology 17, 533-541.
Killeen, M.T., and Sybingco, S.S. (2008). Netrin, Slit and Wnt receptors allow axons to choose the axis of migration. Developmental biology 323, 143-151.
Kimble, J., and Hirsh, D. (1979). The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Developmental biology 70, 396-417.
Kubota, Y., Kuroki, R., and Nishiwaki, K. (2004). A fibulin-1 homolog interacts with an ADAM protease that controls cell migration in C. elegans. Curr Biol 14, 2011-2018.
Lehmann, R. (2001). Cell migration in invertebrates: clues from border and distal tip cells. Current opinion in genetics & development 11, 457-463.
Maloof, J.N., Whangbo, J., Harris, J.M., Jongeward, G.D., and Kenyon, C. (1999). A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development (Cambridge, England) 126, 37-49.
Martin, P. (1997). Wound healing--aiming for perfect skin regeneration. Science (New York, NY 276, 75-81.
Moser, B., Wolf, M., Walz, A., and Loetscher, P. (2004). Chemokines: multiple levels of leukocyte migration control. Trends in immunology 25, 75-84.
Nishiwaki, K. (1999). Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics 152, 985-997.
Okada, A., Charron, F., Morin, S., Shin, D.S., Wong, K., Fabre, P.J., Tessier-Lavigne, M., and McConnell, S.K. (2006). Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444, 369-373.
Pan, C.L., Howell, J.E., Clark, S.G., Hilliard, M., Cordes, S., Bargmann, C.I., and Garriga, G. (2006). Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Developmental cell 10, 367-377.
Park, F.D., Tenlen, J.R., and Priess, J.R. (2004). C. elegans MOM-5/frizzled functions in MOM-2/Wnt-independent cell polarity and is localized asymmetrically prior to cell division. Curr Biol 14, 2252-2258.
Reddien, P.W., and Horvitz, H.R. (2000). CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature cell biology 2, 131-136.
Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: integrating signals from front to back. Science (New York, NY 302, 1704-1709.
Rothberg, J.M., Jacobs, J.R., Goodman, C.S., and Artavanis-Tsakonas, S. (1990). slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes & development 4, 2169-2187.
Seeger, M., Tear, G., Ferres-Marco, D., and Goodman, C.S. (1993). Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10, 409-426.
Sheetz, M.P., Felsenfeld, D., Galbraith, C.G., and Choquet, D. (1999). Cell migration as a five-step cycle. Biochemical Society symposium 65, 233-243.
Silhankova, M., and Korswagen, H.C. (2007). Migration of neuronal cells along the anterior-posterior body axis of C. elegans: Wnts are in control. Current opinion in genetics & development 17, 320-325.
Simons, M., Gault, W.J., Gotthardt, D., Rohatgi, R., Klein, T.J., Shao, Y., Lee, H.J., Wu, A.L., Fang, Y., Satlin, L.M., et al. (2009). Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nature cell biology 11, 286-294.
Song, S., Zhang, B., Sun, H., Li, X., Xiang, Y., Liu, Z., Huang, X., and Ding, M. A Wnt-Frz/Ror-Dsh pathway regulates neurite outgrowth in Caenorhabditis elegans. PLoS genetics 6.
Su, M., Merz, D.C., Killeen, M.T., Zhou, Y., Zheng, H., Kramer, J.M., Hedgecock, E.M., and Culotti, J.G. (2000). Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development (Cambridge, England) 127, 585-594.
Umbhauer, M., Djiane, A., Goisset, C., Penzo-Mendez, A., Riou, J.F., Boucaut, J.C., and Shi, D.L. (2000). The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling. The EMBO journal 19, 4944-4954.
Wadsworth, W.G., Bhatt, H., and Hedgecock, E.M. (1996). Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35-46.
Walston, T., Guo, C., Proenca, R., Wu, M., Herman, M., Hardin, J., and Hedgecock, E. (2006). mig-5/Dsh controls cell fate determination and cell migration in C. elegans. Developmental biology 298, 485-497.
Wang, H.Y., and Malbon, C.C. (2003). Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. Science (New York, NY 300, 1529-1530.
Whangbo, J., and Kenyon, C. (1999). A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Molecular cell 4, 851-858.
Widelitz, R. (2005). Wnt signaling through canonical and non-canonical pathways: recent progress. Growth factors (Chur, Switzerland) 23, 111-116.
Winklbauer, R. (2009). Cell adhesion in amphibian gastrulation. International review of cell and molecular biology 278, 215-275.
Wong, H.C., Bourdelas, A., Krauss, A., Lee, H.J., Shao, Y., Wu, D., Mlodzik, M., Shi, D.L., and Zheng, J. (2003). Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Molecular cell 12, 1251-1260.
Wu, Y.C., Cheng, T.W., Lee, M.C., and Weng, N.Y. (2002). Distinct rac activation pathways control Caenorhabditis elegans cell migration and axon outgrowth. Developmental biology 250, 145-155.
Wu, Y.C., and Horvitz, H.R. (1998). C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501-504.
Wu, Y.C., Tsai, M.C., Cheng, L.C., Chou, C.J., and Weng, N.Y. (2001). C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Developmental cell 1, 491-502.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46541-
dc.description.abstract細胞遷移在多細胞生物發育的過程中扮演著重要的角色。雌雄同體線蟲中兩條性腺的發育是由位於性腺前端的兩顆遠頂細胞在特定的發育時期進行遷移所形成的。這兩顆遠頂細胞依時間順序在幼蟲時期會進行三個階段的遷移,分別稱為遠離生殖孔、腹側到背側、接近生殖孔,最終形成兩條對稱的U型性腺臂。先前的研究揭示有一群細胞外的引導因子會調控遠頂細胞的遷移。同時,屬於引導因子之ㄧ的Netrin家族蛋白UNC-6與其接受器UNC-5與UNC-40已經被詳細研究會影響遠頂細胞從腹側移動到背側的過程。此外,先前我們實驗室發現一個屬於Frizzled家族的訊息接受器MOM-5突變後會產生發生於幼蟲第四期的遠頂細胞向心遷移的缺陷,同時亦發現在線蟲中五種Wnt (LIN-44,EGL-20,CWN-1,CWN-2與MOM-2)突變後也會產生與MOM-5突變株相同的突變表徵,並證實CED-5/GEF與CED-10/Rac參予MOM-5訊息傳遞路徑且作用在DSH-1的下游。這顯示MOM-5作為接受器接收來自引導因子Wnt的訊息且傳遞至下游DSH-1調控遠頂細胞的遷移。然而對於這些引導因子如何傳遞入細胞導致細胞骨架的改變進而造成細胞的移動目前仍不清楚。藉由分析dsh-1的ok1445 allele我們發現其中一種DSH-1的isoform, dsh-1b會影響遠頂細胞向心的移動。此外,dsh-1(ok1445)的突變性狀可經由表現dsh-1b被拯救,這個結果顯示dsh-1b參與遠頂細胞向心的遷移。我們同時也發現在酵母菌雙雜交實驗中DSH-1b可結合CED-5,顯示DSH-1b蛋白可直接與CED-5蛋白結合。整合先前實驗室的研究,我們提供ㄧ個模型,MOM-5可接受特定的Wnt並傳遞訊息給下游的DSH-1,DSH-1藉由與CED-5結合活化CED-10促進遠頂細胞向心的遷移。zh_TW
dc.description.abstractCell migration is essential for the development of multicelluar animals. The gonad formation in the hermaphrodite of Caenorhabditis elegans is guided by stag-specific migration of two leader cells, distal tip cells (DTCs), which are located at the leading edge of each gonad arm. DTCs undergo three sequential phases of linear migration –centrifugal, circumferential and centripetal during larval stages and lead the formation of symmetrical U-shaped gonad arms. Previous studies have shown that a set of conserved extracellular guidance cues control the migration of DTCs. It is well studied that the circumferential migration of DTC is mediated in part by the guidance molecule netrin UNC-6 and its receptors UNC-5 and UNC-4. Our laboratory has previously discovered that mom-5 mutants exhibit a centripetal migration defect in late L4 stage and double mutants of Wnt family member (lin-44;egl-20 and cwn-1;cwn-2) also show the centripetal migration defect. Besides, CED-5/Dock180 and CED-10/Rac which are reported as engulfing genes before are downstream of DSH-1 and involved in MOM-5 pathway. It seems that MOM-5 serves as a guidance receptor receiving guidance signal from Wnts to the downstream components DSH-1 to promote DTC migration. However, it remains unclear how these extracellular cue are transduced by the cell into the cytoskeletal and molecular motor activities that result in cell migration. Analyzing the ok1445 allele of dsh-1 mutant, we demonstrate that loss of the function of dsh-1b which is one of the three isoforms in dsh-1 gene results in DTC centripetal migration defect. The defect of dsh-1(ok1445) could be rescued by expression of DSH-1b under the dsh-1b endogenous promoter. Therefore, dsh-1b is required for correct migration in DTC centripetal migration. Furthermore, I demonstrated that DSH-1b is able to bind to CED-5/Dock180 in the yeast two-hybrid assay. This finding suggests that DSH-1b may signal to CED-5/Dock180 directly. Combine previous works in our lab, we show that MOM-5/Frizzled acts with specific Wnts and tranduces signal to DSH-1b which recruit CED-5/Dock180-CED-12/ELMO complex through direct interaction with CED-5/Dock180 for CED-10/Rac activation to promote DTC centripetal migration.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:14:35Z (GMT). No. of bitstreams: 1
ntu-100-R98b43028-1.pdf: 991032 bytes, checksum: 8993af05bdb255cfe6e75869b600ee78 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
致謝…………………………………………………………………………………………………Ⅰ
中文摘要…………………………………………………………………………………………Ⅱ
英文摘要…………………………………………………………………………………………..Ⅲ
Table of Contents…………………………………………………………………………………Ⅴ
Introduction…………………………………………………………………………………………1
Cell migration is important in development and maintenance of multicellular organism………...1
Distal tip cell as a simple model to study the spatiotemperal control of cell migration in C.
Elegans…………………………………………………………………………………………….2
Genetic analysis of DTC migration in each phase in hermaphrodite worms……………………...4
1. Centrifugal migration phase…………………………………………………………………...4
2. Circumferential migration phase………………………………………………………………5
3. Centripetal migration phase……………………………………………………………………6
Materials and Methods……………………………………………………………………………10
Strains and Genetics……………………………………………………………………………...10
Transgenic worms………………………………………………………………………………...10
Molecular and biology……………………………………………………………………………10
Yeast two-hybrid analysis……………………………………………….………………………..11
Heat shock experiment…………………………………………………………………………...13
Analysis of phenotypes…………………………………………………………………………...14
Results……………………………………………………………………………………………..15
MOM-5 can not transduce Wnt signal by direct bonding CED-2/5/12 ternary complex or
CED-10/Rac……………………………………………………………………………………...15
DSH-1b interacts with CED-5/Dock180 in the yeast two-hybrid assay…………………………17
LIN-44 might be an instructive signal to attract anterior and posterior DTC……………………19
EGL-20 might be a permissive signal for posterior DTC centripetal migration…………………21
Discussion…………………………………………………………………………………………..23
References………………………………………………………………………………………….26
Figures and Tables…………………………………………………………………………………34
Figure1. Schematic diagram show the direction and path of the three sequential phase of DTC
migration…………………………………………………………………………………………34
Figure2. DTC centripetal migration defect in mom-5, ced-5 and lin-44;egl-20 mutants……….35
Figure3. Frizzled family protein structure and C-terminal cytosolic region analysis…………..36
Figure4. MOM-5 intracellular domain can not direct bind to CED-2, CED-5, CED-10 or
CED-12…………………………………………………………………………………………...37
Figure5. The dsh-1 gene structure……………………………………………………………….38
Figure6. DSH-1b physically interacts with CED-5 in vitro……………………………………..39
Table1. dsh-1b rescues the DTC centriprtal migration defect in the dsh-1(ok1445) mutants……40
Table2. Ectopic expression of LIN-44…………………………………………………………...41
Table3. Ectopic expression of EGL-20…………………………………………………………42
Table S1. Potential genes regulate MOM-5 expression at L4 stage…………………………….43
dc.language.isoen
dc.subject向心遷移zh_TW
dc.subject遠頂細胞zh_TW
dc.subject性腺臂zh_TW
dc.subjectDistal tip cellen
dc.subjectgonad armen
dc.subjectcentripetal migrationen
dc.title線蟲LIN-44/Wnt與DSH-1b/Dishevelled參與在遠頂細胞遷移角色的探討zh_TW
dc.titleThe role of Caenorhabditis elegans LIN-44/Wnt and DSH-1/Dishevelled in distal tip cell migrationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee潘俊良(Chun-Liang Pan),廖秀娟(Hsiu-Chuan Liao)
dc.subject.keyword遠頂細胞,性腺臂,向心遷移,zh_TW
dc.subject.keywordDistal tip cell,gonad arm,centripetal migration,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2011-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
967.8 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved