請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46519
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張煥宗 | |
dc.contributor.author | Ruei-Cheng Hou | en |
dc.contributor.author | 侯瑞成 | zh_TW |
dc.date.accessioned | 2021-06-15T05:13:22Z | - |
dc.date.available | 2014-09-15 | |
dc.date.copyright | 2011-09-15 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-18 | |
dc.identifier.citation | 第一章參考文獻
[1] Duff, D. G.; Baiker, A.; Edwards, P. P. Langmuir 1993, 9, 2301. [2] Tada, H.; Ishida, T.; Takao, A.; Ito, S. Langmuir 2004, 20, 7898. [3] Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Angew. Chem. Int. Ed. 2007, 119, 6948. [4] Ghosh, P.; Han, G.; De, M.; Kim, C.; Rotello, V. Adv. Drug Deliv. Rev. 2008, 60, 1307. [5] Huang, C.-C.; Chen, C.-T.; Shiang, Y.-C.; Lin, Z.-H.; Chang, H.-T. Anal. Chem. 2009, 81, 875. [6] Barnes, W.; Dereux, A.; Ebbesen, T. Nature 2003, 424, 824. [7] Knight, W.; Clemenger, K.; de Heer, W.; Saunders, W.; Chou, M.; Cohen, M. Phys. Rev. Lett. 1984, 52, 2141. [8] Alameddin, G.; Hunter, J.; Cameron, D.; Kappes, M. Chem. Phys. Lett.s 1992, 192, 122. [9] Willey, K.; Cheng, P.; Yeh, C.; Robbins, D.; Duncan, M. J. Chem. Phys. 1991, 95, 6249. [10] Fedrigo, S.; Harbich, W.; Buttet, J. Phys. Rev. B 1993, 47, 10706. [11] Ievlev, D.; Rabin, I.; Schulze, W.; Ertl, G. Eur. Phys. J. D 2001, 16, 157. [12] Felix, C.; Sieber, C.; Harbich, W.; Buttet, J.; Rabin, I.; Schulze, W.; Ertl, G. Phys. Rev. Lett. 2001, 86, 2992. [13] J. Sharma, H.-C. Yeh, H. Yoo, J. H. Werner; J. S. Martinez. Chem. Commun. 2010, 46, 3280. [14] Zheng, J.; Dickson, R. J. Am. Chem. Soc. 2002, 124, 13982. [15] Shang, L.; Dong, S. Chem. Commun. 2008, 9, 1088. [16] Díez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, Anja S.; Müller, Axel H. E.; Ikkala, O.; Ras, Robin H. A. Angew. Chem. Int. Ed. 2009, 121, 2156. [17] Shen, Z.; Duan, H.; Frey, H. Adv. Mater. 2007, 19, 349. [18] Duan, H.; Nie, S. J. Am. Chem. Soc. 2007, 129, 2412. [19] Zhang, J.; Xu, S.; Kumacheva, E. Adv. Mater. 2005, 17, 2336. [20] Narayanan, S. S.; Pal, S. K. J. Phys. Chem. B 2008, 112, 4874. [21] Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. J. Am. Chem. Soc. 2004, 126, 5207 [22] Izatt, R.; Christensen, J.; Rytting, J. Chem. Rev. 1971, 71, 439. [23] Hinds, S.; Taft, B. J.; Levina, L.; Sukhovatkin, V.; Dooley, C. J.; Roy, M. D.; MacNeil, D. D.; Sargent, E. H.; Kelley, S. O. J. Am.Chem. Soc. 2005, 128, 64. [24] Richards, C. I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. J. Am. Chem. Soc. 2008, 130, 5038. [25] Gwinn, E.; O'Neill, P.; Guerrero, A.; Bouwmeester, D.; Fygenson, D. Adv. Mater. 2008, 20, 279. [26] T. U. B. Rao, B. Nataraju and T. Pradeep J. Am. Chem. Soc. 2010, 132, 16304. [27] J. Zheng, C. W. Zhang; R. M. Dickson Phys. Rev. Lett. 2004, 77402. [28] J. Zheng, J. T. Petty; R. M. Dickson J. Am. Chem. Soc. 2003, 125, 7780. [29] Y. P. Bao, C. Zhong, D. M. Vu, J. P. Temirov, R. B. Dyer; J. S. Martinez. J. Phys. Chem. C 2007, 111, 12194. [30] C. C. Huang, H. Y. Liao, Y. C. Shiang, Z. H. Lin, Z. Yang and H. T. Chang. J. Mater. Chem. 2009,19, 755. [31] J. P. Xie, Y. G. Zheng; J. Y. Ying. J. Am. Chem. Soc. 2009, 131, 888. [32] Wei, W.; Lu, Y.; Chen, W.; Chen, S. J. Am. Chem. Soc. 2011, 133, 2060. [33] Tanaka, S. I.; Miyazaki, J.; Tiwari, D. K.; Jin, T.; Inouye, Y. Angew. Chem. Int. Ed. 2011, 50, 431. [34] Sweeney, S. F.; Woehrle, G. H.; Hutchison, J. E. J. Am. Chem. Soc. 2006, 128, 3190. [35] Hanauer, M.; Pierrat, S.; Zins, I.; Lotz, A.; Sonnichsen, C. Nano Lett. 2007, 7, 2881. [36] Sun, X.; Tabakman, S. M.; Seo, W. S.; Zhang, L.; Zhang, G.; Sherlock, S.; Bai, L.; Dai, H. Angew. Chem. 2009, 121, 957. [37] Liu, F. K., Lin, Y. Y., Wu, C. H. Anal. Chim. Acta 2005, 528, 249. [38] Chrambach, A., Radko, S. P. Electrophoresis 2000, 21, 259. [39] Radko, S. P., Chrambach, A. J. Chromatogr. A 1999, 848, 443. [40] Arnaud, I., Abid, J. P., Roussel, C., Girault, H. H., Chem. Commun. 2005, 787. [41] Pyell, U., Bu¨ cking, W., Huhn, C., Herrmann, B.,Merkoulov, A., Mannhardt, J., Jungclas, H., Nann, T., Anal. Bioanal. Chem., 2009, 395, 1681. [42] Chen, H.-S., Chang, H.-T. Electrophoresis 1998, 19, 3149. [43] Chen, H.-S., Chang, H.-T. J. Chromatogr. A 1999, 853, 337. [44] Chang, H.-T., Chen, H.-S., Hsieh, M.-M., Tseng, W.-L. Reviews in Anal. Chem. 2000, XIX, 45. [45] Giordano, B. C., Newman, C. I. D., Federowicz, P. M., Collins, G. E., and Burgi, D. S. Anal. Chem. 2007, 79, 6287. [46] Yu, J.; Choi, S.; Richards, C.; Antoku, Y.; Dickson, R. Photochem. Photobiol. 2008, 84, 1435. [47] Yeh, H. C.; Sharma, J.; Han, J. J.; Martinez, J. S.; Werner, J. H. Nano Lett. 2010, 10, 3106. [48] Lan, G. Y.; Chen, W. Y.; Chang, H. T. Biosens. Bioelectron. 2011, 26, 2431. [49] Su, Y. T.; Lan, G. Y.; Chen, W. Y.; Chang, H. T. Anal. Chem. 2010, 82, 8566. [50] Guo, C.; Irudayaraj, J. Anal. Chem. 2011, 83, 2883. [51] Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. Anal. Chem. 2011, 83, 1193. 第二章參考文獻 [1] Diez, I.; Ras, R. H. A. Nanoscale 2011, 3, 1963. [2] Sharma, J.; Yeh, H.-C.; Yoo, H.; Werner, J. H.; Martinez, J. S.Chem. Commun. 2010, 46, 3280. [3] Lan, G.-Y.; Chen, W.-Y.; Chang, H.-T. RSC. Adv. 2011, Accepted. [4] Hanauer, M.; Pierrat, S.; Zins, I.; Lotz, A.; Sonnichsen, C. Nano Lett. 2007, 7, 2881. [5] Sweeney, S. F.; Woehrle, G. H.; Hutchison, J. E. J. Am. Chem. Soc. 2006, 128, 3190. [6] Radko, S. P., Chrambach, A., J. Chromatogr. A 1999, 848, 443. [7] Arnaud, I., Abid, J. P., Roussel, C., Girault, H. H., Chem. Commun. 2005, 787. [8] Jorgenson, J. W., Lukacs, K. D. Anal. Chem. 1981, 53, 1298-1302. [9] Doherty, E. A. S., Meagher, R. J., Albarghouthi, M. N., Barron, A. E. Electrophoresis 2003, 24, 34-54. [10] Gassmann, E., Kuo, J. E., Zare, R. N. Science 1985, 230, 813-814. [11] Chen, H.-S., Chang, H.-T. Electrophoresis 1998, 19, 3149. [12] Chang, H.-T., Chen, H.-S., Hsieh, M.-M., Tseng, W.-L. Reviews in Anal. Chem. 2000, XIX, 45. [13] Izatt, R.; Christensen, J.; Rytting, J. Chem. Rev. 1971, 71, 439. [14] Arya, S.; Yang, J. Biopolymers 1975, 14, 1847. [15] Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. J. Am. Chem. Soc. 2004, 126, 5207. [16] Van Hyning, D. L.; Klemperer, W. G.; Zukoski, C. F. Langmuir 2001, 17, 3128. [17] Lee, L. T. Curr. Opin. Colloid & Interface Sci. 1999, 4, 205. [18] Kao, Y. Y.; Liu, K. T.; Huang, M. F.; Chiu, T. C.; Chang, H. T. J. Chromatogr. A 2010, 1217, 582. [19] Meszaros, R., Varga, I., Gila´nyi, T. J. Phys. Chem. B 2005, 109, 13538. [20] Goddard, E. D. Colloid Surf. 1986, 19, 255. [21] Smitter, L. M., Gu´edez, J. F., M¨uller, A. J., S´aez, A. E. J. Colloid Interface Sci. 2001, 236, 343. [22] Francois, J., Dayantis, J., Sabbadin, J. Eur. Polym. J. 1985, 21, 165. [23] Dong, Q., Wang, X., Zhu, L., Jin, W. J. Chromatogr. A 2002, 959, 269. 第三章參考文獻 [1] Poole, L. B.; Nelson, K. J. Curr. Opin. Chem. Biol. 2008, 12, 18. [2] 行政院衛生署食品藥物管理局http://www.fda.gov.tw/content.aspx?site_content_sn=1959 [3] Leskovac, V.; Trivic, S.; Wohlfahrt, G.; Kandrac, J.; Pericin, D..J. Biochem. Cell Biol. 2005, 37, 731. [4] Lacy, F.; Gough, D. A.; Schmid-Schonbein, G. W. Free Radical Bio. Med. 1998, 25, 720. [5] Wu, M.; Lin, Z.; Schaferling, M.; Durkop, A.; Wolfbeis, O. S Anal. Biochem. 2005, 340, 66. [6] Dickinson, B. C.; Chang, C.J. J. Am. Chem. Soc. 2008, 130, 9638 [7] Yuan, J.; Guo, W.; Wang, E. Anal. Chem. 2008, 80, 1141. [8] Lyon, J. L.; Stevenson, K. J. Anal. Chem. 2006, 78, 8518. [9] Yu, J.; Choi, S.; Richards, C.; Antoku, Y.; Dickson, R. Photochem. Photobiol. 2008, 84, 1435. [10] Lan, G.-Y.; Huang, C.-C.; Chang, H.-T. Chem. Commun. 2010, 46, 1257. [11] Su, Y. T.; Lan, G. Y.; Chen, W. Y.; Chang, H. T. Anal. Chem. 2010, 82, 8566. [12] Lan, G.-Y.; Chen, W.-Y.; Chang, H.-T. Biosens. Bioelectron. 2011, 26, 2431. [13] Lan, G.-Y.; Chen, W.-Y.; Chang, H.-T. RSC. Adv. 2011, Accepted. [14] Aruoma, O. I.; Halliwell, B.; Gajewski, E.; Dizdaroglu, M. Biochem. J 1991, 273, 601. [15] Ritchie, C.; Johnsen, K.; Kiser, J.; Antoku, Y.; Dickson, R.; Petty, J. J. Phys. Chem. C. 2007, 111, 175 [16] Berti, L.; Burley, G. Nature Nanotech. 2008, 3, 81 [17] Li, S.; Dang, Z. Appl. Surf. Sci. 2005, 249, 346 [18] Patel, S. A.; Cozzuol, M.; Hales, J. M.; Richards, C. I.; Sartin, M.; Hsiang, J.-C.; Vosch, T.; Perry, J. W.; Dickson, R. M. J. Phys. Chem. C 2009, 113, 20264. [19] M. Kobayashi, H. Nishara, S. Kobayshi, J. Appl. Glycosi. 1999, 46, 1. [20] Kobayashi, H. Akanuma, T. Yamanouchi, Diabetes Care 2002, 25, 353. [21] O. M. Pitkaene, H Vanhanen, E. Pitkaene Scand. J. Clin. Lab. Invest. 1999, 59, 607. [22] Bauer, R.; Fetter, M. C.; Marino, R. A. Clinical Chem. 1982, 28, 1594. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46519 | - |
dc.description.abstract | 本篇論文包含兩個部份分別是使用毛細管電泳技術結合雷射誘導螢光偵測系統,分離不同片段DNA合成之發光金屬奈米團(nanoclusters, NCs),及應用發光銅銀奈米團簇(Cu/Ag NCs)以消光機制測定水溶液中之過氧化氫(hydrogen peroxide, H2O2)和葡萄糖(glucose)。首先,我們在三種不同序列及長度(24、32、40 bases)之單股DNA存在下,合成DNA-銀奈米團簇,再利用毛細管電泳來分離DNA-銀奈米團簇,在含陰離子界面活性劑(12 mM sodium dodecyl sulfate, SDS)的線性聚合物(poly(ethy1ene oxide), Mw: 8.0E+6 Da, 0.75%)溶液中,於電滲透流(electroosmotic flow, EOF)存在的條件下進行毛細管電泳分離,可在6分鐘內成功分離三種不同的DNA-銀奈米團簇,因SDS可改變金屬團簇之表面電荷分布,及減少DNA-銀奈米團簇及PEO吸附於毛細管壁,故可顯著提升分離的效果。
我們亦利用H2O2可使DNA-Cu/Ag NCs發光強度下降之現象,來開發偵測H2O2和葡萄糖之感測器。在溫度25oC,反應60分鐘條件下,DNA-Cu/Ag NCs 偵測H2O2之偵測極限(limit of detection, LOD)為0.5 μM,其線性範圍為1至100 μM。利用葡萄糖與葡萄糖氧化酶(Glucose oxidase, GOx)反應產生H2O2,故DNA-Cu/Ag NCs感測器亦可用來偵測葡萄糖,其LOD為15 μM。最後將此感測器進一步應用偵測血液中的血糖濃度為4.58 (±0.32) mM,符合理論值的範圍。 | zh_TW |
dc.description.abstract | There are two parts to this thesis: one is to separate different DNA-Ag nanoclusters (NCs) by combining capillary electrophoresis technique with laser-induced fluorescence detection system (CE-LIF); another is to apply fluorescent Cu/Ag NCs to measure H2O2 and glucose concentration in the aqueous solution by quenching effect. At first, forming DNA-Ag NCs from three kinds of single DNA fragments with different sequences and lengths (24, 32, 40 bases), which are then subsequently separated by using capillary electrophoresis. Under optimal conditions, we were able to separate the above mentioned DNA-Ag NCs in six minutes in the presence of EOF. The fact that SDS increases separation efficiency greatly might be attributed to a change in surface electron distribution of DNA-Ag NCs and decreasing DNA-Ag NCs and PEO attachment to capillary wall. We also developed a simple fluorescent sensor approach for the detection of H2O2 and glucose using a DNA-Cu/Ag NCs probe. Under the optimal condition, the DNA-Cu/Ag NCs probe was highly sensitive toward H2O2 ( LOD~0.5 μM ) and the linear range was found to be between 1 to 100 μM. Moreover, the production of H2O2 in the glucose solution was owing to the presence of glucose oxidase (GOx). DNA-Cu/Ag NCs probe can be used to detect glucose concentration with an LOD of 15 μM. Finally, we used it to analyze blood glucose as 4.58 (± 0.32) mM. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:13:22Z (GMT). No. of bitstreams: 1 ntu-100-R97223184-1.pdf: 1927213 bytes, checksum: 47462da0d5716f3e141fcf287bba6bb4 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員審定書
謝誌Ⅰ 中文摘要Ⅴ 英文摘要Ⅵ 目錄Ⅶ 表目錄Ⅹ 圖目錄XI 第一章 序論1 1.1 發光金屬奈米團簇概述1 1.1.1金屬奈米粒子1 1.1.2金屬奈米團簇能階理論與其電子結構2 1.1.3銀奈米團簇能階及其性質3 1.1.4發光銀奈米團簇的製備方法3 1.1.4.1以氣相合成穩定之銀奈米團簇3 1.1.4.2以液相合成穩定之銀奈米團簇3 1.1.4.3以固相合成穩定之銀奈米團簇6 1.1.5 金奈米團簇與其他金屬奈米團簇之合成方法6 1.1.6 鑑定奈米團簇之技術7 1.1.6.1 圓二色光譜儀(circular dichroism, CD) 7 1.1.6.2 化學分析電子能譜儀8 1.1.6.3 質譜儀8 1.1.7 分離奈米粒子之技術8 1.2毛細管電泳原理10 1.2.1電泳和電泳遷移率10 1.2.2電滲流和ζ電位10 1.2.3分離解析度12 1.2.4 分離效率12 1.2.5 EOF存在下使用線性聚合物分離DNA銀奈米團簇12 1.2.6毛細管電泳暨雷射激發誘導螢光13 1.3 金屬奈米團簇的應用13 1.4 研究動機15 1.5 參考文獻16 1.6 本章圖表19 第二章 分離不同序列長度單股DNA合成之銀奈米團簇24 2.1前言24 2.2材料與方法25 2.2.1 實驗試藥25 2.2.2 銀奈米團簇之製備26 2.2.3 緩衝溶液及PEO溶液的製備26 2.2.4 毛細管電泳系統26 2.2.5 毛細管電泳分析27 2.3結果與討論27 2.3.1 [DNA]/[Ag+] =1/6合成之銀奈米團簇其螢光圖與電泳圖分析27 2.3.2 不同[DNA]/[Ag+]合成比例之銀奈米團簇其螢光與電泳 圖分析28 2.3.3不同濃度SDS的影響30 2.4 結論32 2.5 參考文獻33 2.6 本章圖表35 第三章 利用銅銀奈米團簇偵測過氧化氫及葡萄糖49 3.1前言49 3.2材料與方法50 3.2.1 實驗試藥50 3.2.2 銅銀奈米團簇之製備51 3.2.3螢光方法分析過氧化氫及葡萄糖51 3.2.4人體血清前處理51 3.3結果與討論52 3.3.1偵測過氧化氫機制52 3.3.2 DNA銅銀奈米團簇偵測過氧化氫53 3.3.3葡萄糖感測器的靈敏度與選擇專一性53 3.4 結論54 3.5 參考文獻55 3.6 本章圖表57 第四章 總結論與展望67 | |
dc.language.iso | zh-TW | |
dc.title | DNA金屬奈米團簇之合成及應用 | zh_TW |
dc.title | Synthesis and Application of DNA-Template Metal Nanoclusters | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭錦樺,黃志清 | |
dc.subject.keyword | 毛細管電泳,界面活性劑,線性聚合物,奈米團簇, | zh_TW |
dc.subject.keyword | Capillary electrophoresis,SDS,PEO,Nanocluster, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。