請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46504完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王偉仲(Wei-Chung Wang) | |
| dc.contributor.author | Yu-Kai Hung | en |
| dc.contributor.author | 洪郁凱 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:12:33Z | - |
| dc.date.available | 2011-07-26 | |
| dc.date.copyright | 2010-07-26 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-23 | |
| dc.identifier.citation | [1] A. Banks, J. Vincent, and C. Anyakoha, A review of particle swarm optimization. Part I: background
and development, Natural Computing 6 (2007), pp. 467{484. [2] A. Banks, J. Vincent, and C. Anyakoha, A review of particle swarm optimization. Part II: hybridis- ation, combinatorial, multicriteria and constrained optimization, and indicative applications, Natural Computing 7 (2008), pp. 109{124. [3] C. Blum and D. Merkle, Springer-Verlag New York Inc 2008. [4] D. Bratton and J. Kennedy, De ning a standard for particle swarm optimization, in IEEE Swarm Intelligence Symposium, 2007. SIS 2007, 2007, pp. 120{127. [5] J.F. Chang, S.C. Chu, and J.S. Pan, A Parallel Particle Swarm Optimization Algorithm with Com- munication Strategies, Journal of Information Science and Engineering 21 (2005), pp. 809{818. [6] B. Chapman, G. Jost, R. PasVan der , and D. Kuck, The MIT Press 2007. [7] A. Chatterjee and P. Siarry, Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization, Computers and Operations Research 33 (2006), pp. 859{871. [8] M. Clerc, ISTE Publishing Company 2006. [9] M. Clerc and J. Kennedy, The particle swarm-explosion, stability, and convergence in amultidimen- sional complex space, IEEE transactions on Evolutionary Computation 6 (2002), pp. 58{73. [10] J. Dean and S. Ghemawat, MapReduce: Simpli ed data processing on large clusters, in Sixth Sympo- sium on Operating System Design and Implementation, 2004. [11] M. Dorigo and T. Stutzle, MIT press 2004. [12] J. Elble, N. Sahinidis, and P. Vouzis, GPU computing with Kaczmarz's and other iterative algorithms for linear systems, Parallel Computing (2009). [13] A.P. Engelbrecht, John Wiley & Sons 2006. [14] S.K.S. Fan and J.M. Chang, A Modi ed Particle Swarm Optimizer Using an Adaptive Dynamic Weight Scheme, Lecture Notes in Computer Science 4561 (2007), p. 56. [15] D. Gies and Y. Rahmat-Samii, Particle swarm optimization for recon gurable phase-di erentiated array design, Microwave and Optical Technology Letters 38 (2003), pp. 168{175. [16] F. Glover and M. Laguna, Springer 1997. [17] D.E. Goldberg, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA 1989. [18] M. Harris (2007), sC07 Tutorial: High Performance Computing with CUDA. [19] S. Ho, H. Lin, W. Liauh, and S. Ho, OPSO: Orthogonal Particle Swarm Optimization and Its Appli- cation to Task Assignment Problems, Systems, Man and Cybernetics, Part A, IEEE Transactions on 38 (2008), pp. 288{298. [20] S.Y. Ho, L.S. Shu, and J.H. Chen, Intelligent evolutionary algorithms for large parameter optimization problems, Evolutionary Computation, IEEE Transactions on 8 (2004), pp. 522{541. [21] A. Ide and K. Yasuda, A basic study of adaptive particle swarm optimization, Electrical Engineering in Japan 151 (2005). [22] V. Kalivarapu and E. Winer, Implementation of Digital Pheromones in PSO Accelerated by Commodity Graphics Hardware, in 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008. [23] J. Kennedy, The Behavior of Particles, in Proceedings of the 7th International Conference on Evolu- tionary Programming VII, 1998, pp. 581{589. [24] J. Kennedy and R. Eberhart, Particle swarm optimization, in Neural Networks, 1995. Proceedings., IEEE International Conference on, Vol. 4, 1995, pp. 1942{1948. [25] S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by simulated annealing, Science 220 (1983), pp. 671{680. [26] B.I. Koh, A.D. George, R.T. Haftka, and B.J. Fregly, Parallel asynchronous particle swarm optimiza- tion, Int. J. Numer. Meth. Engng 67 (2006), pp. 578{595. [27] K. Krishnakumar, S. Narayanaswamy, and S. Garg, Solving large parameter optimization problems using a genetic algorithm with stoc hastic coding, in Genetic Algorithms in Engineering and Computer Science, G. Winter, J. Periaux, M. Galan, and P. Cuesta, eds., John Wiley & Sons, Inc. New York, NY, USA, 1996. [28] J. Li, D. Wan, Z. Chi, and X. Hu, A Parallel Particle Swarm Optimization Algorithm Based on Fine- Grained Model with GPU-Accelerating, J. of Harbin Institute of Technology 38 (2006), pp. 2162{2166. [29] A.W. McNabb, C.K. Monson, and K.D. Seppi, Parallel PSO using MapReduce, in Evolutionary Com- putation, 2007. CEC 2007. IEEE Congress on, 2007, pp. 7{14. [30] R. Mendes, J. Kennedy, and J. Neves, The fully informed particle swarm: Simpler, maybe better, IEEE Transactions on Evolutionary Computation 8 (2004), pp. 204{210. [31] L. Mussi and S. Cagnoni, Particle swarm optimization within the CUDA architecture, 2009 http://www.gpgpgpu.com/gecco2009/1.pdf. [32] NVIDIA Corporation (2008). [33] NVIDIA Corporation (2009). [34] B. Oster, NVIDIA Corporation (2008), nVISION 08 Tutorials. [35] R. Poli, J. Kennedy, and T. Blackwell, Particle swarm optimization, Swarm Intelligence 1 (2007), pp. 33{57. [36] R. Poli, J. Kennedy, T. Blackwell, and A. Freitas, Hindawi Publishing Corporation 2008. [37] J.F. Schutte, J.A. Reinbolt, B.J. Fregly, R.T. Haftka, and A.D. George, Parallel global optimization with the particle swarm algorithm, International journal for numerical methods in engineering 61 (2004). [38] Y. Shi and R. Eberhart, A modi ed particle swarm optimizer, in Evolutionary Computation Pro- ceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, 1998, pp. 69{73. [39] Y. Shi and R. Eberhart, Parameter selection in particle swarm optimization, Lecture notes in computer science (1998), pp. 591{600. [40] S. Tomov, R. Nath, H. Ltaief, and J. Dongarr, A Scalable High Performant Cholesky Factorization for Multicore with GPU Accelerators, in Proceedings of IPDPS 2010: 24th IEEE International Parallel and Distributed Processing Symposium, 2010. [41] G. Venter and J. Sobieszczanki-Sobieksi, A parallel particle swarm optimization algorithm accelerated by asynchronous evaluations, Journal of Aerospace Computing, Information, and Communication 3 (2006), pp. 123{137. [42] D. Wang, C.H. Wu, A. Ip, D. Wang, and Y. Yan, Parallel multi-population Particle Swarm Optimiza- tion Algorithm for the Uncapacitated Facility Location problem using OpenMP, in Evolutionary Com- putation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on, 2008, pp. 1214{1218. [43] Y. Zhang, D. Gallipoli, and C. Augarde, Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization, Computers and Geotechnics (2008). [44] Y. Zhou and Y. Tan, GPU-based parallel particle swarm optimization, in IEEE Congress on Evolu- tionary Computation, 2009. CEC'09, 2009, pp. 1493{1500. [45] W. Zhu and J. Curry, Particle Swarm with graphics hardware acceleration and local pattern search on bound constrained problems, in Swarm Intelligence Symposium, 2009. SIS '09. IEEE, 2009, pp. 1 {8. 3 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46504 | - |
| dc.description.abstract | 粒子群優化法為基於大量隨機性試驗之無微分最佳化方法,藉由其簡單直覺性與良好的效率性,至今已被採用來解決各種形式的最佳化問題上,使用粒子群優化法來解決高維度或複雜的目標函數問題時,需要使用大量的粒子群來探索並搜尋可能區域來達到隨機性與正確性,因而造成大量的計算源於的需求以及傳統上執行過於緩慢的問題。
在本篇論文中,我們專注於藉由圖形顯示器計算環境下來平行加速粒子群優化法,藉此解決具有簡單的邊界限制與目標函數計算負載平衡的最佳化問題,並提出一種基於大量執行緒觀點下的改良演算法藉此達到最適合於圖形顯示器架構下之粒子群優化演算法。 藉由最後的數值結果可證明圖形顯示器硬體架構非常適合於加速粒子群優化法,可以大量減少計算所耗費的時間並達到高度的平行效能,更可以藉由大量的粒子來達到搜尋到更好的最佳解。舉例來說,本篇論文中使用65536個粒子來搜尋100維度之目標函數最佳化問題時,相對於CPU上單核心的未平行化程式可以達到280倍的速度。 使用基於圖形顯示器加速之粒子群優化法可以在相對於CPU上更短的時間內解決高維度與複雜之目標函數問題,或於相同時間上獲得更佳的最佳化解。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:12:33Z (GMT). No. of bitstreams: 1 ntu-99-R97221018-1.pdf: 3501278 bytes, checksum: b5495f947a545cbc13d192f0d21c4b36 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
1 Abstract 3 2 Introduction 4 3 Particle Swarm Optimization Algorithms 8 4 GPU Architecture 10 5 GPU-Accelerated Algorithm and Implementation 12 6 Numerical Experiments 17 6.1 Timing performance 18 6.2 Solution quality of the computed minima 20 6.3 Eect of particles 21 6.4 Eect of computer arithmetic 21 7 Conclusion 22 References 31 | |
| dc.language.iso | zh-TW | |
| dc.subject | 粒子群優化法 | zh_TW |
| dc.subject | Particle Swarm Optimization | en |
| dc.title | 基於多片圖形顯示器加速之粒子群優化法 | zh_TW |
| dc.title | Accelerating Particle Swarm Optimization via Multiple Graphic Processing Units | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑞彬(Ray-Bing Chen),周呈霙(Cheng-Ying Chou) | |
| dc.subject.keyword | 粒子群優化法, | zh_TW |
| dc.subject.keyword | Particle Swarm Optimization, | en |
| dc.relation.page | 32 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
