請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46498
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林榮耀 | |
dc.contributor.author | Shih-Chin Wang | en |
dc.contributor.author | 汪詩瑾 | zh_TW |
dc.date.accessioned | 2021-06-15T05:12:13Z | - |
dc.date.available | 2012-09-09 | |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-23 | |
dc.identifier.citation | 1. Amato, R.J., and Jac, J. (2006). Targeted anti-cancer therapies for renal cancer. Drugs 66, 2161-2171.
2. Atzpodien, J., Kirchner, H., Illiger, H.J., Metzner, B., Ukena, D., Schott, H., Funke, P.J., Gramatzki, M., Jurgenson, S., Wandert, T., et al. (2001). IL-2 in combination with IFN- alpha and 5-FU versus tamoxifen in metastatic renal cell carcinoma: long-term results of a controlled randomized clinical trial. Br J Cancer 85, 1130-1136. 3. Atzpodien, J., Kirchner, H., Jonas, U., Bergmann, L., Schott, H., Heynemann, H., Fornara, P., Loening, S.A., Roigas, J., Muller, S.C., et al. (2004). Interleukin-2- and interferon alfa-2a-based immunochemotherapy in advanced renal cell carcinoma: a Prospectively Randomized Trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN). J Clin Oncol 22, 1188-1194. 4. Berx, G., and van Roy, F. (2009). Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1, a003129. 5. Bettaieb, A., Dubrez-Daloz, L., Launay, S., Plenchette, S., Rebe, C., Cathelin, S., and Solary, E. (2003). Bcl-2 proteins: targets and tools for chemosensitisation of tumor cells. Curr Med Chem Anticancer Agents 3, 307-318. 6. Bilim, V., Yuuki, K., Itoi, T., Muto, A., Kato, T., Nagaoka, A., Motoyama, T., and Tomita, Y. (2008). Double inhibition of XIAP and Bcl-2 axis is beneficial for retrieving sensitivity of renal cell cancer to apoptosis. Br J Cancer 98, 941-949. 7. Bolos, V., Peinado, H., Perez-Moreno, M.A., Fraga, M.F., Esteller, M., and Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116, 499-511. 8. Cano, A., Perez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F., and Nieto, M.A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2, 76-83. 9. Carmeliet, P. (2003). Angiogenesis in health and disease. Nat Med 9, 653-660. 10. Cha, Y.Y., Lee, E.O., Lee, H.J., Park, Y.D., Ko, S.G., Kim, D.H., Kim, H.M., Kang, I.C., and Kim, S.H. (2004). Methylene chloride fraction of Scutellaria barbata induces apoptosis in human U937 leukemia cells via the mitochondrial signaling pathway. Clin Chim Acta 348, 41-48. 11. Chanvorachote, P., Pongrakhananon, V., Wannachaiyasit, S., Luanpitpong, S., Rojanasakul, Y., and Nimmannit, U. (2009). Curcumin sensitizes lung cancer cells to cisplatin-induced apoptosis through superoxide anion-mediated Bcl-2 degradation. Cancer Invest 27, 624-635. 12. Chen, G., Raman, P., Bhonagiri, P., Strawbridge, A.B., Pattar, G.R., and Elmendorf, J.S. (2004). Protective effect of phosphatidylinositol 4,5-bisphosphate against cortical filamentous actin loss and insulin resistance induced by sustained exposure of 3T3-L1 adipocytes to insulin. J Biol Chem 279, 39705-39709. 13. Chen, Q., Peng, W., Qi, S., and Xu, A. (2002). Apoptosis of human highly metastatic lung cancer cell line 95-D induced by acutiaporberine, a novel bisalkaloid derived from Thalictrum acutifolium. Planta Med 68, 550-553. 14. Chou, T.C. (2003). Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. Br J Pharmacol 139, 1146-1152. 15. Chou, T.C., and Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22, 27-55. 16. Chung, Y.C., Lin, C.C., Chou, C.C., and Hsu, C.P. (2010). The effect of Longan seed polyphenols on colorectal carcinoma cells. Eur J Clin Invest. 17. Conacci-Sorrell, M., Simcha, I., Ben-Yedidia, T., Blechman, J., Savagner, P., and Ben-Ze'ev, A. (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol 163, 847-857. 18. Cui, Y., Shu, X.O., Gao, Y., Wen, W., Ruan, Z.X., Jin, F., and Zheng, W. (2004). Use of complementary and alternative medicine by chinese women with breast cancer. Breast Cancer Res Treat 85, 263-270. 19. Debruyne, D., Mareel, M., Vanhoecke, B., and Bracke, M. (2009). Cell aggregation on agar as an indicator for cell-matrix adhesion: effects of opioids. In Vitro Cell Dev Biol Anim 45, 473-482. 20. Dias, S., Choy, M., Alitalo, K., and Rafii, S. (2002). Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 99, 2179-2184. 21. Drees, F., Pokutta, S., Yamada, S., Nelson, W.J., and Weis, W.I. (2005). Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123, 903-915. 22. Elias, B.C., Bhattacharya, S., Ray, R.M., and Johnson, L.R. (2010). Polyamine-dependent activation of Rac1 is stimulated by focal adhesion-mediated Tiam1 activation. Cell Adh Migr 4. 23. Fang, D., Hawke, D., Zheng, Y., Xia, Y., Meisenhelder, J., Nika, H., Mills, G.B., Kobayashi, R., Hunter, T., and Lu, Z. (2007). Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282, 11221-11229. 24. Ferrara, N., Gerber, H.P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat Med 9, 669-676. 25. Fournier, E., Dubreuil, P., Birnbaum, D., and Borg, J.P. (1995). Mutation at tyrosine residue 1337 abrogates ligand-dependent transforming capacity of the FLT4 receptor. Oncogene 11, 921-931. 26. Fukata, M., Kuroda, S., Nakagawa, M., Kawajiri, A., Itoh, N., Shoji, I., Matsuura, Y., Yonehara, S., Fujisawa, H., Kikuchi, A., et al. (1999). Cdc42 and Rac1 regulate the interaction of IQGAP1 with beta-catenin. J Biol Chem 274, 26044-26050. 27. Garces, C.A., Kurenova, E.V., Golubovskaya, V.M., and Cance, W.G. (2006). Vascular endothelial growth factor receptor-3 and focal adhesion kinase bind and suppress apoptosis in breast cancer cells. Cancer Res 66, 1446-1454. 28. George, C.M., Vogelzang, N.J., Rini, B.I., Geoffroy, F.J., Kollipara, P., and Stadler, W.M. (2002). A phase II trial of weekly intravenous gemcitabine and cisplatin with continuous infusion fluorouracil in patients with metastatic renal cell carcinoma. Ann Oncol 13, 116-120. 29. Guarino, M. (2010). Src signaling in cancer invasion. J Cell Physiol 223, 14-26. 30. Hazan, R.B., Phillips, G.R., Qiao, R.F., Norton, L., and Aaronson, S.A. (2000). Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148, 779-790. 31. He, Q., Ge, Z.W., Song, Y., and Cheng, Y.Y. (2006). Quality evaluation of cortex moutan by high performance liquid chromatography coupled with diode array detector and electrospary ionization tandem mass spectrometry. Chem Pharm Bull (Tokyo) 54, 1271-1275. 32. Heasman, S.J., and Ridley, A.J. (2008). Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9, 690-701. 33. Heuberger, J., and Birchmeier, W. (2010). Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2, a002915. 34. Hirai, A., Terano, T., Hamazaki, T., Sajiki, J., Saito, H., Tahara, K., Tamura, Y., and Kumagai, A. (1983). Studies on the mechanism of antiaggregatory effect of Moutan Cortex. Thromb Res 31, 29-40. 35. Hsieh, C.L., Cheng, C.Y., Tsai, T.H., Lin, I.H., Liu, C.H., Chiang, S.Y., Lin, J.G., Lao, C.J., and Tang, N.Y. (2006). Paeonol reduced cerebral infarction involving the superoxide anion and microglia activation in ischemia-reperfusion injured rats. J Ethnopharmacol 106, 208-215. 36. Hsieh, T.C., Lu, X., Guo, J., Xiong, W., Kunicki, J., Darzynkiewicz, Z., and Wu, J.M. (2002). Effects of herbal preparation Equiguard on hormone-responsive and hormone-refractory prostate carcinoma cells: mechanistic studies. Int J Oncol 20, 681-689. 37. Hung, J.Y., Yang, C.J., Tsai, Y.M., Huang, H.W., and Huang, M.S. (2008). Antiproliferative activity of paeoniflorin is through cell cycle arrest and the Fas/Fas ligand-mediated apoptotic pathway in human non-small cell lung cancer A549 cells. Clin Exp Pharmacol Physiol 35, 141-147. 38. Ishiguro, K., Ando, T., Maeda, O., Hasegawa, M., Kadomatsu, K., Ohmiya, N., Niwa, Y., Xavier, R., and Goto, H. (2006). Paeonol attenuates TNBS-induced colitis by inhibiting NF-kappaB and STAT1 transactivation. Toxicol Appl Pharmacol 217, 35-42. 39. Itoi, T., Yamana, K., Bilim, V., Takahashi, K., and Tomita, F. (2004). Impact of frequent Bcl-2 expression on better prognosis in renal cell carcinoma patients. Br J Cancer 90, 200-205. 40. Jennbacken, K., Vallbo, C., Wang, W., and Damber, J.E. (2005). Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis. Prostate 65, 110-116. 41. Juttner, S., Wissmann, C., Jons, T., Vieth, M., Hertel, J., Gretschel, S., Schlag, P.M., Kemmner, W., and Hocker, M. (2006). Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J Clin Oncol 24, 228-240. 42. Kallergi, G., Agelaki, S., Markomanolaki, H., Georgoulias, V., and Stournaras, C. (2007). Activation of FAK/PI3K/Rac1 signaling controls actin reorganization and inhibits cell motility in human cancer cells. Cell Physiol Biochem 20, 977-986. 43. Kang, D.E., Soriano, S., Xia, X., Eberhart, C.G., De Strooper, B., Zheng, H., and Koo, E.H. (2002). Presenilin couples the paired phosphorylation of beta-catenin independent of axin: implications for beta-catenin activation in tumorigenesis. Cell 110, 751-762. 44. Karkkainen, M.J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T.V., Jeltsch, M., Jackson, D.G., Talikka, M., Rauvala, H., et al. (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5, 74-80. 45. Kausch, I., Jiang, H., Brocks, C., Bruderek, K., Kruger, S., Sczakiel, G., Jocham, D., and Bohle, A. (2004). Ki-67-directed antisense therapy in an orthotopic renal cell carcinoma model. Eur Urol 46, 118-124; discussion 124-115. 46. Kausch, I., Jiang, H., Thode, B., Doehn, C., Kruger, S., and Jocham, D. (2005). Inhibition of bcl-2 enhances the efficacy of chemotherapy in renal cell carcinoma. Eur Urol 47, 703-709. 47. Kojima, H., Shijubo, N., Yamada, G., Ichimiya, S., Abe, S., Satoh, M., and Sato, N. (2005). Clinical significance of vascular endothelial growth factor-C and vascular endothelial growth factor receptor 3 in patients with T1 lung adenocarcinoma. Cancer 104, 1668-1677. 48. Lee, K.Y., Chang, W., Qiu, D., Kao, P.N., and Rosen, G.D. (1999). PG490 (triptolide) cooperates with tumor necrosis factor-alpha to induce apoptosis in tumor cells. J Biol Chem 274, 13451-13455. 49. Li, Q., Dong, X., Gu, W., Qiu, X., and Wang, E. (2003). Clinical significance of co-expression of VEGF-C and VEGFR-3 in non-small cell lung cancer. Chin Med J (Engl) 116, 727-730. 50. Li, R., Younes, M., Wheeler, T.M., Scardino, P., Ohori, M., Frolov, A., and Ayala, G. (2004). Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in human prostate. Prostate 58, 193-199. 51. Li, Y., Zhang, W., Huang, L., and Shi, J. (1997). [Pharmacological of cortex moutan and core]. Zhongguo Zhong Yao Za Zhi 22, 214-216, 254. 52. Lin, S.Y., Liu, J.D., Chang, H.C., Yeh, S.D., Lin, C.H., and Lee, W.S. (2002). Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis. J Cell Biochem 84, 532-544. 53. Liu, Y., Ling, Y., Hu, W., Xie, L., Yu, L., Qian, X., Zhang, B., and Liu, B. (2009). The Herb Medicine Formula 'Chong Lou Fu Fang' Increases the Cytotoxicity of Chemotherapeutic Agents and Down-regulates the Expression of Chemotherapeutic Agent Resistance-related Genes in Human Gastric Cancer Cells In Vitro. Evid Based Complement Alternat Med. 54. Logan, C.Y., and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781-810. 55. Lopez-Beltran, A., Carrasco, J.C., Cheng, L., Scarpelli, M., Kirkali, Z., and Montironi, R. (2009). 2009 update on the classification of renal epithelial tumors in adults. Int J Urol 16, 432-443. 56. Ma, J., Fu, N.Y., Pang, D.B., Wu, W.Y., and Xu, A.L. (2001). Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Med 67, 754-757. 57. Makinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E.C., Wise, L., Mercer, A., Kowalski, H., Kerjaschki, D., et al. (2001). Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20, 4762-4773. 58. Malliri, A., Rygiel, T.P., van der Kammen, R.A., Song, J.Y., Engers, R., Hurlstone, A.F., Clevers, H., and Collard, J.G. (2006). The rac activator Tiam1 is a Wnt-responsive gene that modifies intestinal tumor development. J Biol Chem 281, 543-548. 59. Malliri, A., van Es, S., Huveneers, S., and Collard, J.G. (2004). The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions. J Biol Chem 279, 30092-30098. 60. Marambaud, P., Shioi, J., Serban, G., Georgakopoulos, A., Sarner, S., Nagy, V., Baki, L., Wen, P., Efthimiopoulos, S., Shao, Z., et al. (2002). A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 21, 1948-1956. 61. Maretzky, T., Reiss, K., Ludwig, A., Buchholz, J., Scholz, F., Proksch, E., de Strooper, B., Hartmann, D., and Saftig, P. (2005). ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A 102, 9182-9187. 62. Markman, M. (2002). Safety issues in using complementary and alternative medicine. J Clin Oncol 20, 39S-41S. 63. Mateo, F., Vidal-Laliena, M., Pujol, M.J., and Bachs, O. (2010). Acetylation of cyclin A: a new cell cycle regulatory mechanism. Biochem Soc Trans 38, 83-86. 64. Matsui, Y., Watanabe, J., Ikegawa, M., Kamoto, T., Ogawa, O., and Nishiyama, H. (2008). Cancer-specific enhancement of cisplatin-induced cytotoxicity with triptolide through an interaction of inactivated glycogen synthase kinase-3beta with p53. Oncogene 27, 4603-4614. 65. McLean, G.W., Carragher, N.O., Avizienyte, E., Evans, J., Brunton, V.G., and Frame, M.C. (2005). The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer 5, 505-515. 66. Michiels, F., Habets, G.G., Stam, J.C., van der Kammen, R.A., and Collard, J.G. (1995). A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338-340. 67. Mimura, K., and Baba, S. (1981). Determination of paeonol metabolites in man by the use of stable isotopes. Chem Pharm Bull (Tokyo) 29, 2043-2050. 68. Negrier, S., Perol, D., Ravaud, A., Chevreau, C., Bay, J.O., Delva, R., Sevin, E., Caty, A., and Escudier, B. (2007). Medroxyprogesterone, interferon alfa-2a, interleukin 2, or combination of both cytokines in patients with metastatic renal carcinoma of intermediate prognosis: results of a randomized controlled trial. Cancer 110, 2468-2477. 69. Nelson, W.J., and Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483-1487. 70. Nieman, M.T., Prudoff, R.S., Johnson, K.R., and Wheelock, M.J. (1999). N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147, 631-644. 71. Nizamutdinova, I.T., Oh, H.M., Min, Y.N., Park, S.H., Lee, M.J., Kim, J.S., Yean, M.H., Kang, S.S., Kim, Y.S., Chang, K.C., et al. (2007). Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-kappaB signaling pathways. Int Immunopharmacol 7, 343-350. 72. Nojima, D., Nakajima, K., Li, L.C., Franks, J., Ribeiro-Filho, L., Ishii, N., and Dahiya, R. (2001). CpG methylation of promoter region inactivates E-cadherin gene in renal cell carcinoma. Mol Carcinog 32, 19-27. 73. Oh, G.S., Pae, H.O., Oh, H., Hong, S.G., Kim, I.K., Chai, K.Y., Yun, Y.G., Kwon, T.O., and Chung, H.T. (2001). In vitro anti-proliferative effect of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells. Cancer Lett 174, 17-24. 74. Okubo, T., Nagai, F., Seto, T., Satoh, K., Ushiyama, K., and Kano, I. (2000). The inhibition of phenylhydroquinone-induced oxidative DNA cleavage by constituents of Moutan Cortex and Paeoniae Radix. Biol Pharm Bull 23, 199-203. 75. Olsson, A.K., Dimberg, A., Kreuger, J., and Claesson-Welsh, L. (2006). VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7, 359-371. 76. Oudard, S., Levalois, C., Andrieu, J.M., Bougaran, J., Validire, P., Thiounn, N., Poupon, M.F., Fourme, E., and Chevillard, S. (2002). Expression of genes involved in chemoresistance, proliferation and apoptosis in clinical samples of renal cell carcinoma and correlation with clinical outcome. Anticancer Res 22, 121-128. 77. Pan, L.L., and Dai, M. (2009). Paeonol from Paeonia suffruticosa prevents TNF-alpha-induced monocytic cell adhesion to rat aortic endothelial cells by suppression of VCAM-1 expression. Phytomedicine 16, 1027-1032. 78. Parsons, J.T., Martin, K.H., Slack, J.K., Taylor, J.M., and Weed, S.A. (2000). Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19, 5606-5613. 79. Pavlovich, C.P., and Schmidt, L.S. (2004). Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer 4, 381-393. 80. Peinado, H., Portillo, F., and Cano, A. (2004). Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48, 365-375. 81. Piedra, J., Miravet, S., Castano, J., Palmer, H.G., Heisterkamp, N., Garcia de Herreros, A., and Dunach, M. (2003). p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin Interaction. Mol Cell Biol 23, 2287-2297. 82. Playford, M.P., and Schaller, M.D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene 23, 7928-7946. 83. Polakis, P. (2000). Wnt signaling and cancer. Genes Dev 14, 1837-1851. 84. Powell, S.M., Zilz, N., Beazer-Barclay, Y., Bryan, T.M., Hamilton, S.R., Thibodeau, S.N., Vogelstein, B., and Kinzler, K.W. (1992). APC mutations occur early during colorectal tumorigenesis. Nature 359, 235-237. 85. Qi, J., Wang, J., Romanyuk, O., and Siu, C.H. (2006). Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Mol Biol Cell 17, 1261-1272. 86. Richardson, M.A., Sanders, T., Palmer, J.L., Greisinger, A., and Singletary, S.E. (2000). Complementary/alternative medicine use in a comprehensive cancer center and the implications for oncology. J Clin Oncol 18, 2505-2514. 87. Roura, S., Miravet, S., Piedra, J., Garcia de Herreros, A., and Dunach, M. (1999). Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 274, 36734-36740. 88. Saegusa, M., Hashimura, M., Kuwata, T., and Okayasu, I. (2009). Requirement of the Akt/beta-catenin pathway for uterine carcinosarcoma genesis, modulating E-cadherin expression through the transactivation of slug. Am J Pathol 174, 2107-2115. 89. Santini, D., Vincenzi, B., Tonini, G., Scarpa, S., and Baldi, A. (2003). Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clin Cancer Res 9, 3215; author reply 3216. 90. Sato, A., Asano, T., Horiguchi, A., Ito, K., and Sumitomo, M. (2010). Combination of Suberoylanilide Hydroxamic Acid and Ritonavir is Effective Against Renal Cancer Cells. Urology. 91. Schmitz, A.A., Govek, E.E., Bottner, B., and Van Aelst, L. (2000). Rho GTPases: signaling, migration, and invasion. Exp Cell Res 261, 1-12. 92. Sheehan, M.P., and Atherton, D.J. (1994). One-year follow up of children treated with Chinese medicinal herbs for atopic eczema. Br J Dermatol 130, 488-493. 93. Shi, Y. (2006). Mechanical aspects of apoptosome assembly. Curr Opin Cell Biol 18, 677-684. 94. Stafford, H.S., Saltzstein, S.L., Shimasaki, S., Sanders, C., Downs, T.M., and Sadler, G.R. (2008). Racial/ethnic and gender disparities in renal cell carcinoma incidence and survival. J Urol 179, 1704-1708. 95. Steinhusen, U., Weiske, J., Badock, V., Tauber, R., Bommert, K., and Huber, O. (2001). Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276, 4972-4980. 96. Su, J.L., Yang, P.C., Shih, J.Y., Yang, C.Y., Wei, L.H., Hsieh, C.Y., Chou, C.H., Jeng, Y.M., Wang, M.Y., Chang, K.J., et al. (2006). The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 9, 209-223. 97. Sun, G.P., Wan, X., Xu, S.P., Wang, H., Liu, S.H., and Wang, Z.G. (2008a). Antiproliferation and apoptosis induction of paeonol in human esophageal cancer cell lines. Dis Esophagus 21, 723-729. 98. Sun, G.P., Wang, H., Xu, S.P., Shen, Y.X., Wu, Q., Chen, Z.D., and Wei, W. (2008b). Anti-tumor effects of paeonol in a HepA-hepatoma bearing mouse model via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-alpha production. Eur J Pharmacol 584, 246-252. 99. Takahashi, M., Rhodes, D.R., Furge, K.A., Kanayama, H., Kagawa, S., Haab, B.B., and Teh, B.T. (2001). Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A 98, 9754-9759. 100. Taurin, S., Sandbo, N., Qin, Y., Browning, D., and Dulin, N.O. (2006). Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 281, 9971-9976. 101. Tian, Q., Feetham, M.C., Tao, W.A., He, X.C., Li, L., Aebersold, R., and Hood, L. (2004). Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci U S A 101, 15370-15375. 102. Vallin, J., Thuret, R., Giacomello, E., Faraldo, M.M., Thiery, J.P., and Broders, F. (2001). Cloning and characterization of three Xenopus slug promoters reveal direct regulation by Lef/beta-catenin signaling. J Biol Chem 276, 30350-30358. 103. Van Trappen, P.O., Steele, D., Lowe, D.G., Baithun, S., Beasley, N., Thiele, W., Weich, H., Krishnan, J., Shepherd, J.H., Pepper, M.S., et al. (2003). Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol 201, 544-554. 104. Wan, X.A., Sun, G.P., Wang, H., Xu, S.P., Wang, Z.G., and Liu, S.H. (2008). Synergistic effect of paeonol and cisplatin on oesophageal cancer cell lines. Dig Liver Dis 40, 531-539. 105. Wang, Y., Nakayama, M., Pitulescu, M.E., Schmidt, T.S., Bochenek, M.L., Sakakibara, A., Adams, S., Davy, A., Deutsch, U., Luthi, U., et al. (2010). Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483-486. 106. Wennerberg, K., and Der, C.J. (2004). Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci 117, 1301-1312. 107. Wohlbold, L., and Fisher, R.P. (2009). Behind the wheel and under the hood: functions of cyclin-dependent kinases in response to DNA damage. DNA Repair (Amst) 8, 1018-1024. 108. Xu, S.P., Sun, G.P., Shen, Y.X., Peng, W.R., Wang, H., and Wei, W. (2007a). Synergistic effect of combining paeonol and cisplatin on apoptotic induction of human hepatoma cell lines. Acta Pharmacol Sin 28, 869-878. 109. Xu, S.P., Sun, G.P., Shen, Y.X., Wei, W., Peng, W.R., and Wang, H. (2007b). Antiproliferation and apoptosis induction of paeonol in HepG2 cells. World J Gastroenterol 13, 250-256. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46498 | - |
dc.description.abstract | 腎細胞癌在2007年為全世界發生率第七位的癌症,也是最常見的腎臟惡性腫瘤。而在人類惡性腫瘤中,腎細胞癌佔3 %且每年影響全世界約150,000人,造成約78,000人死亡。大部分的腎細胞癌常常出現血管新生以及細胞入侵能力的提升,加上對傳統治療具有抗性,因此針對有抗性的腎細胞癌患者,近年來細胞激素治療,包含干擾素-α (IFN-α) 與介白素-1,-2,-12 (IL-1,-2,-12) 被大量發展,美國食品暨藥物管制局也允許應用於高度轉移性腎細胞癌已快二十年。然而,細胞激素的使用在中等風險的病人中仍然受限,因此針對於治療腎細胞癌,新藥物的開發與研究應要持續進行。
由於許多國家中的癌症病人開始接受中藥搭配或取代傳統化學治療方式,因此我們以786O細胞株來檢測許多中藥在抑制細胞增生與細胞轉移的效果。我們發現相較於其他中藥,牡丹皮(Paeonia suffruticosa, PS)在細胞實驗與動物實驗中都顯著地抑制細胞轉移與增生,牡丹皮源自牡丹花的樹皮並在過去被應用於許多疾病上,例如:斑、癲癇、經期不規律等。而在過去幾十年的科學研究上,牡丹皮已經被證明有抗增生、抗發炎、抗糖尿病、神經保護等功能。 在本篇研究中,為了探究牡丹皮如何達到抑制細轉移與增生的效果。我們先以即時定量聚合酶連鎖反應 (Quantitative Real-time PCR) 與西方點墨法 (Western blot) 找出被牡丹皮影響的轉移相關基因。我們證明牡丹皮抑制N-cadherin表現量。這樣的抑制效果可能是透過細胞核內β-catenin減少而使Slug表現量下降加上Slug轉置至到細胞核的量也減少;除此之外,我們還發現牡丹皮會影響VEGFR-3/FAK/PI3K訊息傳導路徑來抑制Rac-1的活化而導致肌動蛋白絲形成減少,造成細胞轉移或移動能力降低。 除了抗轉移能力之外,牡丹皮也有良好的抗增生能力,可抑制cyclin A使細胞停滯於細胞周期中的S期,另外,也可以發現Bcl-2減少以及PARP切割增加的情形,代表牡丹皮也可促進細胞凋亡。牡丹皮的抗增生效果可藉由搭配cisplatin與adriamycin來達到協同作用;牡丹皮與cisplatin的協同作用範圍坐落在高抑制區,更具有臨床上的應用價值。根據以上的實驗結果,我們證明牡丹皮同時擁有抑制轉移與增生的能力,亦可以與傳統化學治療一起使用達到協同效果,在未來腎細胞癌的治療上,牡丹皮具有相當大的發展潛力。 | zh_TW |
dc.description.abstract | Renal cell carcinoma (RCC) is responsible for the majority tumor malignancies arising in the kidney, making it the 7th most common cancer among the world in 2007. It accounts for 3 % human malignancies and influences almost 150,000 people worldwide each year, causing approximately 78,000 deaths annually. Most cases of RCC appear to occur sporadically which accompany increased angiogenesis and invasive ability. Moreover, RCC is resistant to conventional therapies, including radiation and chemotherapy. Aimed at the patients with no response to conventional therapy, the cytokine-based therapies including interferon-α (IFN-α), and interleukin-1,-2, and -12 (IL-1,-2, and -12) have been developed and further approved for the treatment of metastatic RCC by US FDA for almost 20 years. However, the effect of cytokines is very limited in intermediate-risk patients. Therefore, development of new agent which inhibits tumor metastasis is crucial for treatment of RCC.
As CHMs is identified as one of alternative strategies in the treatment of many cancers among many countries, we examine the effects of various CHMs on proliferation and migration of 786O cells by MTT assay and migration assay. We found that Paeonia suffruticosa (PS) exhibits stronger anti-metastasis and anti-proliferation activities than other CHMs in vitro and in vivo. Paeonia suffruticosa (PS) has been used in the treatment of various diseases such as macula, epilepsy, and menstrual disorders in tradition prescriptions. In our study, we performed quantitative real-time PCR and western blot analysis to dissect mechanisms affected by PS. Our finding indicates that PS suppresses N-cadherin expression. Through decreased phosphorylation of Akt and Src, noncanonical phosphorylation of β-catenin causes its localization from cytoplasm to nucleus and further triggers Wnt-β-catenin target genes including Slug. Reduction of Slug impairs the transcription of N-cadherin. It is demonstrated that PS suppresses the activation of Rac-1 via VEGFR-3/FAK/PI3K pathway, leading to the decreased formation of stress fiber and inhibition of migration. Additionally, PS induces intrinsic apoptosis pathway and cause S phase arrest. Consequently, we provided the potential remedy that combination of PS with cisplatin or adriamycin, respectively, could synergistically enhance the cytotocicity of RCC in a different manner. In particular, PS and cisplatin in combination have synergistic effects in high inhibitory range. These results described above suggest that PS has dual effects on migration and proliferation and can be administrated to the patients with RCC. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:12:13Z (GMT). No. of bitstreams: 1 ntu-99-R97442015-1.pdf: 1953363 bytes, checksum: 397c1d7fef279b33c55e94ddfa6cdf2c (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 致謝…………………………………………………………………………………………………………ii
Contents …………………………………………………………………………………………………iv List of figures………………………………………………………………………………………….viii Abbreviations……………………………………………………………………………………………x 摘要………………………………………………………………………………………………………xiv Abstract…………………………………………………………………………………………………xvi Chapter 1. Introduction……………………………………………………………………………1 1. Introduction of renal cell carcinoma………………………………………………2 2. Chinese herbal medicine (CHM)………………………………………………………3 3. Introduction of Paeonia suffruticosa………………………………………………4 4. Regulation of β-catenin by phosphorylation……………………………………5 5. β-catenin regulates cadherin expression through Slug……………………7 6. Introduction of VEGFR-3 signaling…………………………………………………7 7. Focal adhesion molecule (FAK) is the key regulator to promote cell proliferation, survival, and migration……………………………………………………9 8. Research purpose…………………………………………………………………………9 Chapter 2. Materials and Methods…………………………………………………………11 1. Materials………………………………………………………………………………………12 2. Preparation of Paeonia suffruticos (PS)…………………………………………13 3. Cell culture……………………………………………………………………………………13 4. Cell viability assay…………………………………………………………………………14 5. migration assay………………………………………………………………………………15 6. Wound-healing assay………………………………………………………………………16 7. Aggregation assay……………………………………………………………………………16 8. Invasion assay…………………………………………………………………………………17 9. Immunofluorescence analysis…………………………………………………………18 10. Mouse xenograft model…………………………………………………………………18 11. RNA extraction and reverse transcription…………………………………………19 11.1 RNAs extraction………………………………………………………………………………19 11.2 DNase I treatment……………………………………………………………………………20 11.3 Reverse transcription. ………………………………………………………………………21 12. Quantitative Real-time PCR (Q-PCR) …………………………………………………22 13. Flow cytometry assay………………………………………………………………………23 14. GST-PBD pull down assay…………………………………………………………………24 14.1 Purification of GST-PBD from E. coli extract……………………………………24 14.2 Preparation of GST-PBD beads………………………………………………………24 14.3 Affinity-precipitation of GTP-bound Rac-1 proteins…………………………25 15. Preparation of F- and G-actin fractions………………………………………………26 16. Preparation of whole cell lysates and subcellular fractions…………………27 17. Western blot analysis……………………………………………………………………….28 17.1 Quantification of protein concentration……………………………………………28 17.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)…………………………29 17.2.1 Preparation of SDS-polyacrylamide gels ………………………………………29 17.2.2 preparation of protein samples……………………………………………………30 17.2.3 Performance of gel electrophoresis………………………………………………30 17.3 Semi-Dry blotting system……………………………………………………………………30 17.4 Immunoblotting…………………………………………………………………………………31 18. Statistical analysis…………………………………………………………………………………32 Chapter 3. Results………………………………………………………………………………………33 1. PS inhibits cell mobility and migration ability of 786O cells…………………34 2. PS suppresses invasive activity of 786O cells.………………………………………34 3. PS inhibits tumor metastasis in vivo.………………………………………………………35 4. PS suppresses N-cadherin expression to reduce migration and invasion activity in 786O cell………………………………………………………………………………………36 5. PS inhibits aggregation ability to reduce the migration and invasion of 786O cells………………………………………………………………………………………………36 6. PS reduces the expression of Slug and β-catenin, along with translocation of slug from cytoplasm to nucleus………………………………………………………………37 7. PS represses VEGFR-3 signaling pathway………………………………………………38 8. PS inhibits the activation of Rac-1 via suppression of FAK phosphorylation……………………………………………………………………………………39 9. PS interferes with the organization of actin cytoskeleton to reduce migration of 786O cells…………………………………………………………………………………40 10. PS inhibits the proliferation of 786O cells………………………………………………41 11. PS suppresses tumor growth in vivo………………………………………………………41 12. PS arrests cell cycle at S phase and promotes apoptosis…………………………42 13. Combination of PS with adriamycin or cisplatin has synergistic cytotoxicitic effects …………………………………………………………………………………………43 Chapter 4. Discussion………………………………………………………………………………………45 Chapter 5. Figures……………………………………………………………………………………………53 Chapter 6. References………………………………………………………………………………………72 | |
dc.language.iso | en | |
dc.title | 牡丹皮抑制腎癌細胞的轉移與增生 | zh_TW |
dc.title | Paeonia suffruticosa suppresses the migration and proliferation of renal cell carcinoma cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂紹俊,李德章 | |
dc.subject.keyword | 腎細胞癌,牡丹皮,第三型血管表皮生長因子接受器,β-catenin,FAK,Bcl-2, | zh_TW |
dc.subject.keyword | renal cell carcinoma,Paeonia suffruticosa,VEGFR-3,β-catenin,FAK,Bcl-2, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-23 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。