請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46497完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佩貞 | |
| dc.contributor.author | Shih-Wei Tan | en |
| dc.contributor.author | 覃世偉 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:12:10Z | - |
| dc.date.available | 2016-08-23 | |
| dc.date.copyright | 2011-08-23 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | Aitken, R.J., M.Q. Chaudhry, A.B. Boxall, and M. Hull. 2006. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med (Lond) 56:300-306.
Auffan, M., W. Achouak, J. Rose, M.A. Roncato, C. Chaneac, D.T. Waite, A. Masion, J.C. Woicik, M.R. Wiesner, and J.Y. Bottero. 2008. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730-6735. Beauchamp, C., and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276-287. Beers, R.F., Jr., and I.W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133-140. Bokare, A.D., and W. Choi. 2009. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 43:7130-7135. Buyukhatipoglu, K., and A.M. Clyne. 2011. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A 96:186-195. Chae, Y.J., C.H. Pham, J. Lee, E. Bae, J. Yi, and M.B. Gu. 2009. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic Toxicology 94:320-327. Chen, P.J., C.H. Su, C.Y. Tseng, S.W. Tan, and C.H. Cheng. 2011. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar Pollut Bull 63:339-346. Christian, P., F. Von der Kammer, M. Baalousha, and T. Hofmann. 2008. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326-343. Cotgreave, I.A., P. Moldeus, and S. Orrenius. 1988. Host biochemical defense mechanisms against prooxidants. Annu Rev Pharmacol Toxicol 28:189-212. Cullen, L.G., E.L. Tilston, G.R. Mitchell, C.D. Collins, and L.J. Shaw. 2011. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82:1675-1682. Cundy, A.B., L. Hopkinson, and R.L. Whitby. 2008. Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42-51. Dalzell, D.J.B., and N.A.A. Macfarlane. 1999. The toxicity of iron to brown trout and effects on the gills: a comparison of two grades of iron sulphate. Journal of Fish Biology 55:301-315. Diao, M., and M. Yao. 2009. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243-5251. Donaldson, K., V. Stone, P.J. Borm, L.A. Jimenez, P.S. Gilmour, R.P. Schins, A.M. Knaapen, I. Rahman, S.P. Faux, D.M. Brown, and W. MacNee. 2003. Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 34:1369-1382. Elliott, D.W., and W.X. Zhang. 2001. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922-4926. Fish, J.T. 2009. Groundwater water treatment for iron and manganese reduction and fish rearing studies applied to the design of the Ruth Burnett Sport Fish Hatchery, Fairbanks, Alaska. Aquacultural Engineering 41:97-108. Foster, J.G., and J.L. Hess. 1980. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66:482-487. Fukahori, S., H. Ichiura, T. Kitaoka, and H. Tanaka. 2003. Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique. Environ Sci Technol 37:1048-1051. Grieger, K.D., A. Fjordboge, N.B. Hartmann, E. Eriksson, P.L. Bjerg, and A. Baun. 2010. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165-183. He, F., and D. Zhao. 2007. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216-6221. He, F., D. Zhao, and C. Paul. 2010. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360-2370. Ishikawa, Y. 2000. Medakafish as a model system for vertebrate developmental genetics. Bioessays 22:487-495. Joo, S.H., A.J. Feitz, D.L. Sedlak, and T.D. Waite. 2005. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39:1263-1268. Kadar, E., G.A. Tarran, A.N. Jha, and S.N. Al-Subiai. 2011. Stabilization of engineered zero-valent nanoiron with na-acrylic copolymer enhances spermiotoxicity. Environ Sci Technol 45:3245-3251. Karlsson, H.L., L. Nilsson, and L. Moller. 2005. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem Res Toxicol 18:19-23. Karlsson, H.L., J. Gustafsson, P. Cronholm, and L. Moller. 2009. Size-dependent toxicity of metal oxide particles--a comparison between nano- and micrometer size. Toxicol Lett 188:112-118. Keenan, C.R., and D.L. Sedlak. 2008. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 42:1262-1267. Keenan, C.R., R. Goth-Goldstein, D. Lucas, and D.L. Sedlak. 2009. Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43:4555-4560. Kim, H.S., J.Y. Ahn, K.Y. Hwang, I.K. Kim, and I. Hwang. 2010. Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: characteristics and reactivity. Environ Sci Technol 44:1760-1766. Kirschling, T.L., K.B. Gregory, E.G. Minkley, Jr., G.V. Lowry, and R.D. Tilton. 2010. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474-3480. Klaine, S.J., P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, and J.R. Lead. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825-1851. Kristiansen, K.A., P.E. Jensen, I.M. Moller, and A. Schulz. 2009. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy. Physiol Plant 136:369-383. Ku, Y., and I.L. Jung. 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 35:135-142. Kumpiene, J., S. Ore, G. Renella, M. Mench, A. Lagerkvist, and C. Maurice. 2006. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144:62-69. LeBel, C.P., H. Ischiropoulos, and S.C. Bondy. 1992. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227-231. Lee, C., J.Y. Kim, W.I. Lee, K.L. Nelson, J. Yoon, and D.L. Sedlak. 2008. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927-4933. Li, H., Q. Zhou, Y. Wu, J. Fu, T. Wang, and G. Jiang. 2009. Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72:684-692. Li, Z., K. Greden, P.J. Alvarez, K.B. Gregory, and G.V. Lowry. 2010. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44:3462-3467. Liu, Y., and G.V. Lowry. 2006. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environ Sci Technol 40:6085-6090. Liu, Y., H. Choi, D. Dionysiou, and G.V. Lowry. 2005. Trichloroethene Hydrodechlorination in Water by Highly Disordered Monometallic Nanoiron. Chemistry of Materials 17:5315-5322. Lu, C., F. Su, and S. Hu. 2008. Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Applied Surface Science 254:7035-7041. Matheson, L.J., and P.G. Tratnyek. 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology 28:2045-2053. Mustafa, S.A., S.N. Al-Subiai, S.J. Davies, and A.N. Jha. 2011. Hypoxia-induced oxidative DNA damage links with higher level biological effects including specific growth rate in common carp, Cyprinus carpio L. Ecotoxicology. Nohl, H., A. Kozlov, L. Gille, and K. Staniek. 2005. Endogenous Oxidant-Generating Systems, p. 389-614, In T. Grune, (ed.) Reactions, Processes. ed. The Handbook of Environmental Chemistry. Springer Berlin / Heidelberg. Paterson, G., J.M. Ataria, M.E. Hoque, D.C. Burns, and C.D. Metcalfe. 2011. The toxicity of titanium dioxide nanopowder to early life stages of the Japanese medaka (Oryzias latipes). Chemosphere 82:1002-1009. Phenrat, T., T.C. Long, G.V. Lowry, and B. Veronesi. 2009. Partial oxidation ('aging') and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195-200. Phenrat, T., N. Saleh, K. Sirk, R.D. Tilton, and G.V. Lowry. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284-290. Pitkethly, M.J. 2004. Nanomaterials - the driving force. Materials Today 7:20-29. Ponder, S.M., J.G. Darab, and T.E. Mallouk. 2000. Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science & Technology 34:2564-2569. Powell, R.M., D.W. Blowes, R.W. Gillham, D. Schultz, T. Sivavec, R.W. Puls, J.L. Vogan, P.D. Powell, and R. Landis. 1998. Permeable reactive barrier technologies for contaminent remediation. United States Environmental Protection Agency Available at: www.epa.com. Accessed: 10 July 2011. Preuss, M., G.D. Girnun, C.J. Darby, N. Khoo, A.A. Spector, and M.E. Robbins. 2000. Role of antioxidant enzyme expression in the selective cytotoxic response of glioma cells to gamma-linolenic acid supplementation. Free Radic Biol Med 28:1143-1156. Reeves, J.F., S.J. Davies, N.J. Dodd, and A.N. Jha. 2008. Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640:113-122. Reinsch, B.C., B. Forsberg, R.L. Penn, C.S. Kim, and G.V. Lowry. 2010. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ Sci Technol 44:3455-3461. Richards, D.M., R.T. Dean, and W. Jessup. 1988. Membrane proteins are critical targets in free radical mediated cytolysis. Biochim Biophys Acta 946:281-288. Saleh, N., H.J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, and G.V. Lowry. 2008. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349-3355. Saleh, N., K. Sirk, Y. Liu, T. Phenrat, B. Dufour, K. Matyjaszewski, R.D. Tilton, and G.V. Lowry. 2007. Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science 24:45-57. Schlessinger, J. 1983. Mobilities of cell-membrane proteins: how are they modulated by the cytoskeleton? Trends in Neurosciences 6:360-363. Schrick, B., B.W. Hydutsky, J.L. Blough, and T.E. Mallouk. 2004. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials 16:2187-2193. Spitz, D.R., and L.W. Oberley. 1989. An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179:8-18. Strecker, R., T.B. Seiler, H. Hollert, and T. Braunbeck. 2011. Oxygen requirements of zebrafish (Danio rerio) embryos in embryo toxicity tests with environmental samples. Comp Biochem Physiol C Toxicol Pharmacol 153:318-327. Su, C., and R.W. Puls. 2001. Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35:1487-1492. Sun, H., X. Zhang, Z. Zhang, Y. Chen, and J.C. Crittenden. 2009. Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite. Environ Pollut 157:1165-1170. Sun, Y.P., X.Q. Li, J. Cao, W.X. Zhang, and H.P. Wang. 2006. Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47-56. Teien, H.C., O.A. Garmo, A. Atland, and B. Salbu. 2008. Transformation of iron species in mixing zones and accumulation on fish gills. Environ Sci Technol 42:1780-1786. Thomas, P., and M.S. Rahman. 2011. Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. Proc Biol Sci. Tofighy, M.A., and T. Mohammadi. 2011. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185:140-147. Turi, J.L., F. Yang, M.D. Garrick, C.A. Piantadosi, and A.J. Ghio. 2004. The iron cycle and oxidative stress in the lung. Free Radic Biol Med 36:850-857. Valko, M., H. Morris, and M.T. Cronin. 2005. Metals, toxicity and oxidative stress. Curr Med Chem 12:1161-1208. Voinov, M.A., J.O. Sosa Pagan, E. Morrison, T.I. Smirnova, and A.I. Smirnov. 2011. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133:35-41. Wang, X., C. Chen, Y. Chang, and H. Liu. 2009. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. J Hazard Mater 161:815-823. Wittbrodt, J., A. Shima, and M. Schartl. 2002. Medaka--a model organism from the far East. Nat Rev Genet 3:53-64. Wu, R.S. 2002. Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35-45. Wu, Y., Q. Zhou, H. Li, W. Liu, T. Wang, and G. Jiang. 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology 100:160-167. Xiu, Z.M., K.B. Gregory, G.V. Lowry, and P.J. Alvarez. 2010. Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44:7647-7651. Zhang, W.X. 2003. Nanoscale iron particles for environmental remediation: An overview. J Nanopartic Res 5:323-332. Zhu, M.T., B. Wang, Y. Wang, L. Yuan, H.J. Wang, M. Wang, H. Ouyang, Z.F. Chai, W.Y. Feng, and Y.L. Zhao. 2011. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol Lett 203:162-171. 蘇志翔。2010。穩定化奈米零價鐵及其氧化產物對青鱂魚苗的毒性效應。碩士論文。台北:台灣大學農業化學系。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46497 | - |
| dc.description.abstract | 奈米零價鐵(Nanoscale zerovalent iron, nZVI)常被使用於現地地下水與土壤汙染復育,研究指出經表面修飾劑包覆之nZVI能夠提升其在地下水層中之移動能力與汙染物移除效率。目前關於nZVI之生物毒性及其於水體環境中宿命之研究非常有限。本篇研究目的在探討不同形式nZVI及相關奈米鐵物種對青鱂魚苗(Oryzias latipes)毒性效應及其毒性作用機制。高濃度(50、100 mg/L)之CMC-nZVI、nZVI、nFe3O4與Fe2+對青鱂魚苗之急毒性順序為Fe2+>CMC-nZVI>nZVI> nFe3O4。CMC-nZVI及nZVI在溶液中快速解離Fe2+並產生大量的ROS,使青鱂魚苗暴露在缺氧與大量ROS之逆境下造成魚苗死亡。CMC-nZVI (50、100 mg/L)藉由穩定劑之包覆使NPs穩定懸浮於暴露溶液並增加暴露有效劑量,並且在溶液中產生較多的Fe2+與活性氧物種(Reactive oxygen species, ROS)而使急毒性高於同濃度下之nZVI。穿透式電子顯微鏡(Transmission electron microscopy, TEM)影像顯示nZVI與nFe3O4易於聚集成團粒,但CMC-nZVI則否。高濃度(100 mg/L) CMC-nZVI及nZVI溶液中之DO快速地降至0 mg/L並持續3小時以上,並且使總ROS強度增加。在24小時之內,CMC-nZVI溶液之鐵物種逐漸轉變為Fe2+及Fe3+,而nZVI溶液中鐵離子濃度較低。低濃度(0.5、5 mg/L)暴露下,CMC-nZVI與nZVI在暴露過程(7天)中使魚苗體內過氧化氫酶(Catalase, CAT)之活性先下降後上升;nFe3O4與Fe2+在暴露過程(14天)中增加魚苗體內CAT、穀胱甘肽還原酶(Glutathione reductase, GR)之活性與總ROS強度並降低超氧歧化酶(Superoxide dismutase, SOD)之活性,進而對魚苗造成氧化壓力。由組織病理觀察發現,青鱂魚苗暴露CMC-nZVI、nZVI (25、100 mg/L)7天後導致鰓與腸道組織有鐵累積的現象,且腸道組織受到損害;暴露nFe3O4與Fe2+ (25、100 mg/L) 3天與nFe3O4與Fe2+ (5 mg/L)14天後亦會導致鰓與腸道組織有鐵累積的情形。因此,在本研究條件之下,穩定劑之包覆提高CMC-nZVI對青鱂魚苗之毒性效應,而CMC-nZVI與nZVI在溶液中反應後之產物(如nFe3O4與Fe2+)對水生生態系仍具有潛在性的風險。 | zh_TW |
| dc.description.abstract | Nanoscale zerovalent iron (nZVI) has been increasingly used for in situ groundwater and soil remediation because of its high redox activity and specific characteristics of nanoparticles (NPs). Recent applications are often involved in the use of surface-modified nZVI with the stabilizer that can enhance mobility of nZVI while travelling through the underground aquifer. However, the ultimate fate of iron NPs under- or above-ground aquifer and associated risks of exposure and toxicity to environmental life remain poorly understood at present. The objective of the study is to understand modes of toxic action of different iron NPs by comparing their lethal and sublethal effect(s) in medaka (Oryzias latipes). We have treated medaka larvae with thoroughly characterized solutions containing nZVI (uncoated), carboxymethyl cellulose sodium (CMC)-coated nZVI, nanoscale iron oxides (nFe3O4) and ferrous (Fe2+) ion at 0.5 - 100 mg/L for 7 days aqueous exposure. TEM images indicated that uncoated nZVI and nFe3O4 tended to aggregate, but CMC-nZVI did not. Dissolve oxygen suddenly dropped to 0 mg/L for >180 min and total reactive oxygen species (ROS) were elevated after the addition of CMC-nZVI and nZVI (100 mg/L). Fe2+ and Fe3+ were major species in CMC-nZVI, but at low concentration in the nZVI solution during 24 hr’s monitoring. In the meantime, the acute toxicity were in the order of Fe2+ > CMC-nZVI > nZVI > nFe3O4 at high exposure concentrations (50 and 100 mg/L). At low exposure concentrations (0.5 and 5 mg/L), nFe3O4 and Fe2+ significantly increased CAT, GR activities and intracellular ROS levels, but decreased SOD activity. CMC-nZVI and nZVI only altered CAT activity. Based on histopathological analyses, treated groups (> 25 mg/L of CMC-nZVI, nZVI, nFe3O4 and Fe2+) led to various degrees of accumulation of iron particles in the fish gill and intestine tissues. Intestine wall and intestinal villi were damaged at some treated groups (> 25 mg/L of CMC-nZVI and nZVI). In this study, we observed that the use of stabilizer on nZVI and its reaction products (nFe3O4 and Fe2+) may increase hazardous risk of nZVI to the aquatic ecosystem. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:12:10Z (GMT). No. of bitstreams: 1 ntu-100-R98623005-1.pdf: 3661410 bytes, checksum: 5fe7efaa2d1a2a21b8ed86bd1b6e8c0f (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 I
縮寫對照表 II 中文摘要 IV Abstract VI 目錄 VIII 圖目錄 XI 表目錄 XIV 一、緒論 1 1.1 奈米科技與其在環境保護之應用 1 1.2 奈米零價鐵作為汙染復育材料之應用 7 1.3 奈米零價鐵去除汙染物的作用機制 12 1.4奈米零價鐵在環境中可能的行為及宿命 16 1.5 奈米零價鐵對生物之影響 19 1.5.1 奈米零價鐵與氧化壓力之關係 19 1.5.2 奈米零價鐵對微生物或細胞的毒性效應 21 1.5.3 奈米零價鐵對水生生物的毒性效應 22 1.5.4 奈米零價鐵氧化產物的毒性效應 23 1.6 研究動機與目的 24 1.7 模式生物 25 二、材料與方法 27 2.1 研究架構 27 2.2.1 化學藥品與試劑 29 2.2.2 儀器設備 30 2.3 奈米鐵懸浮液製備 31 2.3.1 未包覆奈米零價鐵(nZVI)之合成 31 2.3.2 包覆奈米零價鐵(CMC-nZVI)之合成 31 2.3.3 奈米氧化鐵(nFe3O4)懸浮液製備 32 2.4 奈米鐵粒子特性分析 33 2.4.1 穿透式電子顯微鏡(TEM)觀測 33 2.4.2奈米粒徑暨介面電位分析儀測定 33 2.4.3 界達電位 (Zeta potential)測定 34 2.5 奈米鐵暴露溶液動力變化分析 35 2.5.1 平均粒徑大小變化 35 2.5.2 pH值、DO與ORP之變化 35 2.5.3 鐵物種之變化 35 2.5.3.1 總鐵濃度測定 36 2.5.3.2 二價鐵與三價鐵離子測定 37 2.5.3.3 懸浮態鐵顆粒濃度測定 37 2.5.4 暴露溶液之總ROS強度測定 37 2.6 模式生物與飼養條件 40 2.7 奈米鐵溶液對青鱂魚苗之急毒性試驗 41 2.7.1 暴露溶液之製備 41 2.7.2 急毒性試驗及樣本收集 41 2.7.3 暴露溶液分析 42 2.8 不同奈米鐵溶液(低濃度)對青鱂魚苗之慢毒性試驗 43 2.8.1 暴露溶液之製備 43 2.8.2 慢毒性試驗及樣本收集 43 2.8.3 暴露溶液分析 43 2.8.4 魚苗體內抗氧化酵素活性與總ROS強度分析 44 2.8.4.1 魚體樣本均質與蛋白質濃度測定 44 2.8.4.2 抗氧化酵素活性分析 44 2.8.4.3 超氧歧化酶(SOD)活性分析 44 2.8.4.4 過氧化氫酶(CAT)活性分析 44 2.8.4.5 穀胱甘肽還原酶(GR)活性分析 45 2.8.4.6 總ROS強度分析 45 2.9 青鱂魚苗組織病理變化與魚體內鐵累積現象觀察 46 2.9.1 切片的製作、染色與觀察 46 2.9.1.1 石蠟切片的製作 46 2.9.1.2 石蠟切片染色與觀察 46 2.10 統計分析 47 三、結果與討論 48 3.1 奈米鐵顆粒於暴露溶液中的特性分析 48 3.1.1 奈米鐵顆粒特性分析結果 48 3.1.2 奈米鐵顆粒隨時間平均粒徑之變化 52 3.2 奈米鐵暴露溶液性質分析結果 54 3.2.1 pH值之變化 54 3.2.2 溶氧量(DO)之變化 55 3.2.3 氧化還原電位(ORP)之變化 61 3.2.4 鐵物種與總ROS強度之變化 66 3.3 奈米鐵顆粒對青鱂魚苗之急毒性試驗 74 3.3.1 奈米鐵顆粒對青鱂魚苗急毒性之結果 74 3.3.2 CMC-nZVI與nZVI對青鱂魚苗體內抗氧化酵素活性及總ROS強度變化之分析 80 3.4 nFe3O4與Fe2+ (低濃度)對青鱂魚苗之慢毒性試驗(抗氧化酵素活性及總ROS強度變化之分析) 84 3.5 青鱂魚苗組織病理變化與鐵生物累積之觀察 89 3.5.1 暴露奈米鐵溶液後青鱂魚苗鰓組織變化及鐵生物累積 89 3.5.2 暴露奈米鐵溶液後青鱂魚苗腸道組織變化及鐵生物累積 96 四、結論 103 參考文獻 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 活性氧物種 | zh_TW |
| dc.subject | 青鱂 | zh_TW |
| dc.subject | 奈米零價鐵 | zh_TW |
| dc.subject | 魚(Oryzias latipes) | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | Oxidative stress | en |
| dc.subject | Nanoscale zerovalent iron (nZVI) | en |
| dc.subject | Medaka (Oryzias latipes) | en |
| dc.subject | Reactive oxygen species (ROS) | en |
| dc.title | 包覆及未包覆奈米零價鐵對青鱂魚苗毒性效應之探討 | zh_TW |
| dc.title | Toxicity assessments of coated and uncoated nanoscale zerovalent iron in medaka (Oryzias latipes) larvae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳先琪,蔡春進,廖秀娟,吳嘉文 | |
| dc.subject.keyword | 奈米零價鐵,青鱂,魚(Oryzias latipes),活性氧物種,氧化壓力, | zh_TW |
| dc.subject.keyword | Nanoscale zerovalent iron (nZVI),Medaka (Oryzias latipes),Reactive oxygen species (ROS),Oxidative stress, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
