請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46474完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 錢宗良(Chung-Liang Chien) | |
| dc.contributor.author | Lung-Kun Yeh | en |
| dc.contributor.author | 葉龍坤 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:10:55Z | - |
| dc.date.available | 2011-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-23 | |
| dc.identifier.citation | Amemiya CT, Zhong TP, Silverman GA, Fishman MC & Zon LI (1999) Zebrafish YAC, BAC, and PAC genomic libraries. Methods Cell Biol 60, 235-258.
Antonsson P, Heinegard D & Oldberg A (1991) Posttranslational modifications of fibromodulin. J Biol Chem 266, 16859-16861. Austin BA, Coulon C, Liu CY, Kao WW & Rada JA (2002) Altered collagen fibril formation in the sclera of lumican-deficient mice. Invest Ophthalmol Vis Sci43, 1695-1701. Barathi VA, Weon SR & Beuerman RW (2009) Expression of muscarinic receptors in human and mouse sclera and their role in the regulation of scleral fibroblasts proliferation. Mol Vis 15, 1277-1293. Berghmans S, Butler P, Goldsmith P, Waldron G, Gardner I, Golder Z, Richards FM, Kimber G, Roach A, Alderton W & Fleming A (2008) Zebrafish based assays for the assessment of cardiac, visual and gut function--potential safety screens for early drug discovery. J Pharmacol Toxicol Methods 58, 59-68. Braat AK, van de Water S, Korving J & Zivkovic D (2001) A zebrafish vasa morphant abolishes vasa protein but does not affect the establishment of the germline. Genesis 30, 183-185. Britten RJ & Davidson EH (1971) Repetitive and non-repetitive DNA sequencesand a speculation on the origins of evolutionary novelty. Q Rev Biol 46, 111-138. Chakravarti S (2001) The cornea through the eyes of knockout mice. Exp Eye Res 73, 411-419. Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C & Carroll H (1998) Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141, 1277-1286. Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A & Birk DE (2003) Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice. Invest Ophthalmol Vis Sci 44, 2422-2432. Chakravarti S, Petroll WM, Hassell JR, Jester JV, Lass JH, Paul J & Birk DE(2000) Corneal opacity in lumican-null mice: defects in collagen fibrilstructure and packing in the posterior stroma. Invest Ophthalmol Vis Sci 41, 3365-3373. Chang HY & Ready DF (2000) Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science 290, 1978-1980. Chen TT, Vrolijk NH, Lu JK, Lin CM, Reimschuessel R & Dunham RA (1996)Transgenic fish and its application in basic and applied research. Biotechnol Annu Rev 2, 205-236. Chen ZT, Wang IJ, Shih YF & Lin LL (2009) The association of haplotype at the lumican gene with high myopia susceptibility in Taiwanese patients.Ophthalmology 116, 1920-1927. Chou AC, Shih YF, Ho TC & Lin LL (1997) The effectiveness of 0.5% atropine in controlling high myopia in children. J Ocul Pharmacol Ther 13, 61-67. Conrad AH & Conrad GW (2003) The keratocan gene is expressed in both ocular and non-ocular tissues during early chick development. Matrix Biol 22, 323-337. Cornuet PK, Blochberger TC & Hassell JR (1994) Molecular polymorphism oflumican during corneal development. Invest Ophthalmol Vis Sci 35, 870-877. Corpuz LM, Funderburgh JL, Funderburgh ML, Bottomley GS, Prakash S &Conrad GW (1996) Molecular cloning and tissue distribution of keratocan. Bovine corneal keratan sulfate proteoglycan 37A. J Biol Chem 271, 9759-9763. Cottriall CL & McBrien NA (1996) The M1 muscarinic antagonist pirenzepine reduces myopia and eye enlargement in the tree shrew. Invest Ophthalmol Vis Sci 37, 1368-1379. Cottriall CL, McBrien NA, Annies R & Leech EM (1999) Prevention of form-deprivation myopia with pirenzepine: a study of drug delivery and distribution. Ophthalmic Physiol Opt 19, 327-335. Deere M, Johnson J, Garza S, Harrison WR, Yoon SJ, Elder FF, Kucherlapati R, Hook M & Hecht JT (1996) Characterization of human DSPG3, a small dermatan sulfate proteoglycan. Genomics 38, 399-404. Doane KJ, Ting WH, McLaughlin JS & Birk DE (1996) Spatial and temporal variations in extracellular matrix of periocular and corneal regions during corneal stromal development. Exp Eye Res 62, 271-283. Ernst B, Hart, G.W., Sinay, P., (2000) Carbohydrates in Chemistry and Biology. Indianapolis, IN: Wiley-VCH. Ezura Y, Chakravarti S, Oldberg A, Chervoneva I & Birk DE (2000) Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J Cell Biol 151, 779-788. Fisher LW, Heegaard AM, Vetter U, Vogel W, Just W, Termine JD & Young MF(1991) Human biglycan gene. Putative promoter, intron-exon junctions, and chromosomal localization. J Biol Chem 266, 14371-14377. Funderburgh JL, Caterson B & Conrad GW (1987) Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan. J Biol Chem 262, 11634-11640. Funderburgh JL, Corpuz LM, Roth MR, Funderburgh ML, Tasheva ES & Conrad GW (1997) Mimecan, the 25-kDa corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin. J Biol Chem 272, 28089-28095. Funderburgh JL, Funderburgh ML, Brown SJ, Vergnes JP, Hassell JR, Mann MM & Conrad GW (1993) Sequence and structural implications of a bovine corneal keratan sulfate proteoglycan core protein. Protein 37B represents bovine lumican and proteins 37A and 25 are unique. J Biol Chem 268, 11874-11880. Funderburgh JL, Funderburgh ML, Hevelone ND, Stech ME, Justice MJ, Liu CY, Kao WW & Conrad GW (1995) Sequence, molecular properties, and chromosomal mapping of mouse lumican. Invest Ophthalmol Vis Sci 36, 2296-2303. Funderburgh JL, Funderburgh ML, Mann MM & Conrad GW (1991a) Arterial lumican. Properties of a corneal-type keratan sulfate proteoglycan from bovine aorta. J Biol Chem 266, 24773-24777. Funderburgh JL, Funderburgh ML, Mann MM & Conrad GW (1991b) Physicaland biological properties of keratan sulphate proteoglycan. Biochem Soc Trans 19, 871-876. Gates MA, Kim L, Egan ES, Cardozo T, Sirotkin HI, Dougan ST, Lashkari D, Abagyan R, Schier AF & Talbot WS (1999) A genetic linkage map forzebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res 9, 334-347. Geisler R, Rauch GJ, Baier H, van Bebber F, Bross L, Dekens MP, Finger K, FrickeC, Gates MA, Geiger H, Geiger-Rudolph S, Gilmour D, Glaser S, Gnugge L,Habeck H, Hingst K, Holley S, Keenan J, Kirn A, Knaut H, Lashkari D,Maderspacher F, Martyn U, Neuhauss S, Neumann C, Nicolson T, Pelegri F, Ray R, Rick JM, Roehl H, Roeser T, Schauerte HE, Schier AF, Schonberger U, Schonthaler HB, Schulte-Merker S, Seydler C, Talbot WS, Weiler C, Nusslein-Volhard C & Haffter P (1999) A radiation hybrid map of the zebrafish genome. Nat Genet 23, 86-89. Grover J, Chen XN, Korenberg JR & Roughley PJ (1995) The human lumican gene. Organization, chromosomal location, and expression in articular cartilage. J Biol Chem 270, 21942-21949. Conrad GW (2000) Carbohydrates in Chemistry and Biology: (B. Ernst et) Eds. Hackett PB, Alvarez, M. C. (2000) Recent Advances in Marine Biotechnology. New York, N. Y.: Milton Fingerman, ed. Hukriede NA, Joly L, Tsang M, Miles J, Tellis P, Epstein JA, Barbazuk WB, Li FN,Paw B, Postlethwait JH, Hudson TJ, Zon LI, McPherson JD, Chevrette M, Dawid IB, Johnson SL & Ekker M (1999) Radiation hybrid mapping of the zebrafish genome. Proc Natl Acad Sci U S A 96, 9745-9750. Iozzo RV (1997) The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol 32,141-174. Iozzo RV (1999) The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 274, 18843-18846. Iozzo RV & Danielson KG (1999) Transcriptional and posttranscriptional regulation of proteoglycan gene expression. Prog Nucleic Acid Res Mol Biol 62, 19-53. Iozzo RV & Murdoch AD (1996) Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J 10, 598-614. Johnson JM, Young TL & Rada JA (2006) Small leucine rich repeat proteoglycans (SLRPs) in the human sclera: identification of abundant levels of PRELP. Mol Vis 12, 1057-1066. Kao WW (2006) Ocular surface tissue morphogenesis in normal and disease states revealed by genetically modified mice. Cornea 25, S7-S19. Kao WW, Funderburgh JL, Xia Y, Liu CY & Conrad GW (2006) Focus on molecules: lumican. Exp Eye Res 82, 3-4. Karlen S & Rebagliati M (2001) A morpholino phenocopy of the cyclops mutation. Genesis 30, 126-128. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram MK, Congdon NG & O'Colmain BJ (2004) The prevalence of refractive errorsamong adults in the United States, Western Europe, and Australia. Arch Ophthalmol 122, 495-505. Kennedy BN, Vihtelic TS, Checkley L, Vaughan KT & Hyde DR (2001) Isolation of a zebrafish rod opsin promoter to generate a transgenic zebrafish line expressing enhanced green fluorescent protein in rod photoreceptors. J Biol Chem 276, 14037-14043. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B & Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310. King MC & Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188, 107-116. Knapik EW, Goodman A, Atkinson OS, Roberts CT, Shiozawa M, Sim CU,Weksler-Zangen S, Trolliet MR, Futrell C, Innes BA, Koike G, McLaughlin MG, Pierre L, Simon JS, Vilallonga E, Roy M, Chiang PW, Fishman MC, Driever W & Jacob HJ (1996) A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development 123, 451-460. Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, Shimoda N, Driever W, Fishman MC & Jacob HJ (1998) A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 18, 338-343. Knudson CB & Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12, 69-78. Krull NB & Gressner AM (1992) Differential expression of keratan sulphate proteoglycans fibromodulin, lumican and aggrecan in normal and fibrotic rat liver. FEBS Lett 312, 47-52. Kwok C, Korn RM, Davis ME, Burt DW, Critcher R, McCarthy L, Paw BH, Zon LI, Goodfellow PN & Schmitt K (1998) Characterization of whole genome radiation hybrid mapping resources for non-mammalian vertebrates. Nucleic Acids Res 26, 3562-3566. Lele Z, Bakkers J & Hammerschmidt M (2001) Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations. Genesis 30, 190-194. Lin LL, Shih YF, Hsiao CK, Chen CJ, Lee LA & Hung PT (2001) Epidemiologic study of the prevalence and severity of myopia among schoolchildren in Taiwan in 2000. J Formos Med Assoc 100, 684-691. Liu CY, Birk DE, Hassell JR, Kane B & Kao WW (2003) Keratocan-deficient mice display alterations in corneal structure. J Biol Chem 278, 21672-21677. Liu CY, Shiraishi A, Kao CW, Converse RL, Funderburgh JL, Corpuz LM, Conrad GW & Kao WW (1998) The cloning of mouse keratocan cDNA and genomic DNA and the characterization of its expression during eye development. J Biol Chem 273, 22584-22588. Liu CY, Zhu G, Converse R, Kao CW, Nakamura H, Tseng SC, Mui MM, Seyer J, Justice MJ, Stech ME & et al. (1994) Characterization and chromosomal localization of the cornea-specific murine keratin gene Krt1.12. J Biol Chem 269, 24627-24636. Liu Q, Wu J, Wang X & Zeng J (2007) Changes in muscarinic acetylcholine receptor expression in form deprivation myopia in guinea pigs. Mol Vis 13, 1234-1244. Luft WA, Ming Y & Stell WK (2003) Variable effects of previously untested muscarinic receptor antagonists on experimental myopia. Invest Ophthalmol Vis Sci 44, 1330-1338. Majava M, Bishop PN, Hagg P, Scott PG, Rice A, Inglehearn C, Hammond CJ, Spector TD, Ala-Kokko L & Mannikko M (2007) Novel mutations in the small leucine-rich repeat protein/proteoglycan (SLRP) genes in high myopia. Hum Mutat 28, 336-344. McBrien NA, Metlapally R, Jobling AI & Gentle A (2006) Expression of collagen-binding integrin receptors in the mammalian sclera and their regulation during the development of myopia. Invest Ophthalmol Vis Sci 47, 4674-4682. McBrien NA, Moghaddam HO & Reeder AP (1993) Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Invest Ophthalmol Vis Sci 34, 205-215. Meng A, Jessen JR & Lin S (1999) Transgenesis. Methods Cell Biol 60, 133-148. Michelacci YM (2003) Collagens and proteoglycans of the corneal extracellular matrix. Braz J Med Biol Res 36, 1037-1046. Morel L (2004) Mouse models of human autoimmune diseases: essential tools that require the proper controls. PLoS Biol 2, E241. Moring AG, Baker JR & Norton TT (2007) Modulation of glycosaminoglycan levels in tree shrew sclera during lens-induced myopia development and recovery. Invest Ophthalmol Vis Sci 48, 2947-2956. Mullins MC, Hammerschmidt M, Haffter P & Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4, 189-202. Nasevicius A & Ekker SC (2000) Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26, 216-220. Negron JF & Lockshin RA (2004) Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Dev Dyn 231, 161-170. Paluru PC, Scavello GS, Ganter WR & Young TL (2004) Exclusion of lumican and fibromodulin as candidate genes in MYP3 linked high grade myopia. Mol Vis 10, 917-922. Pellegata NS, Dieguez-Lucena JL, Joensuu T, Lau S, Montgomery KT, Krahe R, Kivela T, Kucherlapati R, Forsius H & de la Chapelle A (2000) Mutations in KERA, encoding keratocan, cause cornea plana. Nat Genet 25, 91-95. Phillips JR, Khalaj M & McBrien NA (2000) Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Invest Ophthalmol Vis Sci 41, 2028-2034. Piatigorsky J (1998) Gene sharing in lens and cornea: facts and implications. Prog Retin Eye Res 17, 145-174. Piatigorsky J, O'Brien WE, Norman BL, Kalumuck K, Wistow GJ, Borras T, Nickerson JM & Wawrousek EF (1988) Gene sharing by delta-crystallin and argininosuccinate lyase. Proc Natl Acad Sci U S A 85, 3479-3483. Postlethwait JH, Yan YL, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Joly JS, Larhammar D, Rosa F, Westerfield M, Zon LI, Johnson SL & Talbot WS (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18, 345-349. Pulkkinen L, Alitalo T, Krusius T & Peltonen L (1992) Expression of decorin in human tissues and cell lines and defined chromosomal assignment of the gene locus (DCN). Cytogenet Cell Genet 60, 107-111. Rada JA, Cornuet PK & Hassell JR (1993) Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Exp Eye Res 56, 635-648. Rada JA, Shelton S & Norton TT (2006) The sclera and myopia. Exp Eye Res 82, 185-200. Raouf A, Ganss B, McMahon C, Vary C, Roughley PJ & Seth A (2002) Lumican is a major proteoglycan component of the bone matrix. Matrix Biol 21, 361-367. Saika S, Miyamoto T, Tanaka S, Tanaka T, Ishida I, Ohnishi Y, Ooshima A, Ishiwata T, Asano G, Chikama T, Shiraishi A, Liu CY, Kao CW & Kao WW (2003) Response of lens epithelial cells to injury: role of lumican in epithelial-mesenchymal transition. Invest Ophthalmol Vis Sci 44, 2094-2102. Saika S, Shiraishi A, Liu CY, Funderburgh JL, Kao CW, Converse RL & Kao WW (2000) Role of lumican in the corneal epithelium during wound healing. J Biol Chem 275, 2607-2612. Schwartz M, Haim M & Skarsholm D (1990) X-linked myopia: Bornholm eye disease. Linkage to DNA markers on the distal part of Xq. Clin Genet 38, 281-286. Shih YF, Hsiao CK, Chen CJ, Chang CW, Hung PT & Lin LL (2001) An intervention trial on efficacy of atropine and multi-focal glasses in controlling myopic progression. Acta Ophthalmol Scand 79, 233-236. Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E, Kaplan S, Jackson D, de Sauvage F, Jacob H & Fishman MC (1999) Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219-232. Siegwart JT, Jr. & Norton TT (1999) Regulation of the mechanical properties of tree shrew sclera by the visual environment. Vision Res 39, 387-407. Solnica-Krezel L, Schier AF & Driever W (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401-1420. Soules KA & Link BA (2005) Morphogenesis of the anterior segment in the zebrafish eye. BMC Dev Biol 5, 12. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267, 1445-1449. Stone RA, Lin T & Laties AM (1991) Muscarinic antagonist effects on experimental chick myopia. Exp Eye Res 52, 755-758. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ & Marra MA (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99, 16899-16903. Streisinger G, Walker C, Dower N, Knauber D & Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293-296. Stuart GW, Vielkind JR, McMurray JV & Westerfield M (1990) Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development 109, 577-584. Tan DT, Lam DS, Chua WH, Shu-Ping DF & Crockett RS (2005) One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology 112, 84-91. Udvadia AJ & Linney E (2003) Windows into development: historic, current, and future perspectives on transgenic zebrafish. Dev Biol 256, 1-17. Vorbach C, Scriven A & Capecchi MR (2002) The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 16, 3223-3235. Wang IJ, Chiang TH, Shih YF, Hsiao CK, Lu SC, Hou YC & Lin LL (2006) The association of single nucleotide polymorphisms in the 5'-regulatory region of the lumican gene with susceptibility to high myopia in Taiwan. Mol Vis 12, 852-857. Westerfield M (1995) The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish Danio rerio. Eugene, OR: University of Oregon Press. Williams FE & Messer WS, Jr. (2004) Muscarinic acetylcholine receptors in the brain of the zebrafish (Danio rerio) measured by radioligand binding techniques. Comp Biochem Physiol C Toxicol Pharmacol 137, 349-353. Wilson AC, Carlson SS & White TJ (1977) Biochemical evolution. Annu Rev Biochem 46, 573-639. Wilson AC, Ochman, H., and Prager, E. M. (1987) Trends Genet. 3, 241-247. Xu YS, Kantorow M, Davis J & Piatigorsky J (2000) Evidence for gelsolin as a corneal crystallin in zebrafish. J Biol Chem 275, 24645-24652. Yeh LK, Chen WL, Li W, Espana EM, Ouyang J, Kawakita T, Kao WW, Tseng SC & Liu CY (2005) Soluble lumican glycoprotein purified from human amniotic membrane promotes corneal epithelial wound healing. Invest Ophthalmol Vis Sci 46, 479-486. Yeh LK, Liu CY, Chien CL, Converse RL, Kao WW, Chen MS, Hu FR, Hsieh FJ & Wang IJ (2008) Molecular analysis and characterization of zebrafish keratocan (zKera) gene. J Biol Chem 283, 506-517. Ying S, Shiraishi A, Kao CW, Converse RL, Funderburgh JL, Swiergiel J, Roth MR, Conrad GW & Kao WW (1997) Characterization and expression of the mouse lumican gene. J Biol Chem 272, 30306-30313. Young TL, Ronan SM, Alvear AB, Wildenberg SC, Oetting WS, Atwood LD, Wilkin DJ & King RA (1998) A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet 63, 1419-1424. Zhang J, Talbot WS & Schier AF (1998) Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241-251. Zhong TP, Kaphingst K, Akella U, Haldi M, Lander ES & Fishman MC (1998)Zebrafish Genomic Library in Yeast Artificial Chromosomes. Genomics 48, 136-138. Zuckerkandl E (1994) Molecular pathways to parallel evolution: I. Gene nexuses and their morphological correlates. J Mol Evol 39, 661-678. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46474 | - |
| dc.description.abstract | 基質蛋白(keratocan)和透明蛋白(lumican)屬於富含白氨基酸小多醣蛋白家族(small leucine- rich proteoglycan (SLRP),是角 膜基質層中主要細胞外基質(extracellular matrix)的蛋白質 (keratin sulfate (KS) proteoglycan)。兩者在胚胎時期角膜之發育和長大之後維持角膜清析度是非常重要。斑馬魚為一理想之脊椎動物模式來研究從胚胎到長大階段基因之表現,實驗中以斑馬魚為動物模式來研究基質蛋白和透明蛋白兩基因並且定出它們的特性,並了解其功能。
首先研究基質蛋白基因(zkera)結構並定出它的特性,另外研究已找出基質蛋白基因中1.7Kb 長度是有效之起動子(promoter)借由基因重組技術和顯微技術注射至魚卵內使早期發育時期表現出綠色螢光(EGFP),並且發現一偽基質蛋白基因。使用設計之反義核酸(morpholino)來降低魚胚胎中之基質蛋白的蛋白質量,如同剔除特定基因老鼠的身上表現出不正常的表現型,來研究早期發育時期蛋白質的作用功能。研究早期發育時期之形態分析,更進一步探討它們的功能與作用機轉。結果顯示基質蛋白反義核酸注射魚卵內後有出現較高之死亡率、表現型則尚須仔細定出特性。並且發現此一現象是經由caspase-3 and caspase-8 路徑之caspase- dependent pathway 之細胞凋亡現象。斑馬魚保存了大部份基質蛋白基因外還發現新的功能。 第二部份是研究透明蛋白基因,它是脊椎動物中角膜基質層與鞏膜中主要細胞外基質(extracellular matrix)的蛋白質。透明蛋白基因被認為與人類的近視(axial myopia)疾病有關。選擇以斑馬魚為動物模式來研究透明蛋白在近視發展中所扮演之角色。首先定性分析透明蛋白基因,了解斑馬魚透明蛋白基因之結構並與人類與老鼠及其他生物物種透明蛋白基因比較其演化關係,並且為了了解透明蛋白基因啟動子promoter 之功能以綠螢光(EGFP)來研究其表現。為了了解在 早期發育時,探討角膜透明蛋白在早期發育時所扮演之角色和如何作用的機轉,以透明蛋白反義核酸注射使基因失去作用knockdown。透明蛋白反義核酸注射後其中眼睛方面最明顯、且有趣的表現型是眼球會增大突出,此一現象隨著斑馬魚的年紀增大而更明顯。眼球會增大突出之表現與近視模式頗為相像,並且利用電子顯微鏡來了解不同時期眼睛超微結構是否與透明蛋白基因剃除老鼠和高度近視有相關連性。更進一步實行藥物篩選(drug screen test)以治療近視之藥物(muscarinic receptor antagonists)治療因透明蛋白基因失去作用而引起之眼球增大突出使之不會眼球增大,以此嘗試建立以斑馬魚為近視之研究模式。 | zh_TW |
| dc.description.abstract | Keratocan and lumican, belong to the family of small leucine-rich proteoglycans (SLRPs), are the main extracellular matrix proteins of the corneal stroma. Both play a pivotal role in maintaining corneal transparency and function during development. The zebrafish (Danio rerio) is an ideal vertebrate animal model to be applied to characterize and molecular analysis the keratocan and lumican genes.
At first, we isolated and characterized the zebrafish keratocan (zKera) gene. Human keratocan sequence was used to search zebrafish homologues. The zKera full-length genomic DNA and cDNA were generated via PCR of zebrafish genomic DNA and RT-PCR of total zebrafish eye RNA, respectively. The zKera spanning 3.5 kilobase pairs consists of two exons and one intron, and a TATA-less promoter. The zKera encodes 341 amino acid with 59% identity to its human counterpart and 57% to that of mouse keratocan. Like mouse and chick keratocan,zKera mRNA is selectively expressed in the adult cornea, however, during embryonic development, zKera mRNA is expressed in both the brain and the cornea. Interestingly, it is expressed mainly in corneal epithelium but few in the stroma. A pseudogene was proved by introducing a zKera promoter-driven enhanced green fluorescence protein (EGFP) reporter gene into fertilized zebrafish eggs. Using morpholino-antisense against zKera to knock-down zKera resulted in lethal phenotype due to massive caspase-dependent apoptosis, which was noted by a significant increase of active caspase-3 and caspase-8, in the developing forebrain area including eyes. This is different from mouse, for which keratocan deficient mice are viable. Taken together, our data indicate that mammalian keratocan is conserved in zebrafish in terms of gene structure, expression pattern, and promoter function. The lumican gene (Lum), which encodes one of the major keratan sulfate proteoglycans (KSPGs) in the vertebrate cornea and sclera, has been linked to axial myopia in humans. We chose zebrafish (Danio rerio) as an animal model to elucidate the role of lumican in the development of axial myopia. The zebrafish lumican gene (zLum) spans approximately 4.6 kilobases (kb) of the zebrafish genome. Like human (hLUM) and mouse (mLum), zebrafish Lum (zLum) consists of three exons, two introns, and a TATA box-less promoter at the 5’-flanking region of the transcription initiation site. Sequence analysis of the cDNA predicts that zLum encodes 344 amino acids. zLum shares 51% amino acid sequence identity with human lumican. Similar to hLUM and mLum, zLum mRNA is expressed in the eye and many other tissues, such as brain, muscle and liver as well. Transgenic zebrafish harboring an Enhanced Green Fluorescent Protein (EGFP) reporter gene construct downstream of a 1.7 kb zLum 5’-flanking region displayed EGFP expression in the cornea and sclera, as well as throughout the body. Down-regulation of zLum expression by antisense zLum morpholinos (MO) manifested ocular enlargement resembling axial myopia due to disruption of the collagen fibril arrangement in the sclera and resulted in scleral thinning. Administration of muscarinic receptor antagonists, e.g., atropine, pirenzepine, effectively subdued the ocular enlargement caused by morpholinos in in vivo zebrafish larvae assays. The observation suggests that zebrafish can be used as an in vivo model for screening compounds in treating myopia. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:10:55Z (GMT). No. of bitstreams: 1 ntu-99-D94446001-1.pdf: 4212750 bytes, checksum: db7bda48b7f1c408a8db827f00f81ee2 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Acknowledgement-------------------------------------------------------------------- i-ii
Table of contents ----------------------------------------------------------------------1-2 Abbreviations--------------------------------------------------------------------------3 Summary of Dissertation in Chinese----------------------------------------------- 4-5 Summary Dissertation in English --------------------------------------------------6-7 Chapter 1. General Introduction--------------------------------------------- 8 An overview of Corneal Epithelium, Stroma and Extracellular Matrix----- 9-10 Keratocan and lumican Protein in Cornea------------ -----------------------------10-12 The Application of Zebrafish Model to Study Early Development---------- 12-15 Specific aims of current study -------------------------------------------------- 15-17 Chapter 2. Molecular Analysis And Characterization of Zebrafish Keratocan (ZKERA) Gene--------------------------------------------------- 18 Abstract------------------------------------------------------------------------------ 19-20 Introduction ------------------------------------------------------------------------ 21-22 Materials and Methods ----------------------------------------------------------- 23-31 Results ------------------------------------------------------------------------------ 32-39 Discussions -------------------------------------------------------------------------- 40-46 Figures and Tables----------------------------------------------------------------- 47-69 Chapter 3. Knockdown of Zebrafish Lumican Gene (ZLUM) Causes Scleral Thinning And Increased Size of Scleral Coats------------------70 Abstract------------------------------------------------------------------------------ 71-72 Introduction ------------------------------------------------------------------------ 73-75 Materials and Methods ----------------------------------------------------------- 76-83 Results ------------------------------------------------------------------------------ 84-93 Discussions ------------------------------------------------------------------------- 94-97 Figures and Tables------------------------------------------------------------------98-138 Chapter 4. Conclusions and Future prospectives----------------------139 Conclusions ------------------------------------------------------------------------ 140 Prospectives-------------------------------------------------------------------------140-142 Bibliography----------------------------------------------------------------------143 References---------------------------------------------------------------------------144-152 Appendix--------------------------------------------------------------------------153 | |
| dc.language.iso | en | |
| dc.subject | 近視 | zh_TW |
| dc.subject | 富含白氨基酸小多醣蛋白 | zh_TW |
| dc.subject | 基質蛋白 | zh_TW |
| dc.subject | 透明蛋白 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | zebrafish | en |
| dc.subject | myopia | en |
| dc.subject | small leucine-rich proteoglycans | en |
| dc.subject | keratocan | en |
| dc.subject | lumican | en |
| dc.title | 富含白氨基酸小多醣蛋白的基質蛋白與透明蛋白在斑馬魚眼睛扮演角色之探討 | zh_TW |
| dc.title | The Role of small leucine-rich proteoglycan proteins (keratocan and lumican) in the Zebrafish Eye | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 盧國賢,王一中(I-Jong Wang),曹友平,黃敏銓 | |
| dc.subject.keyword | 富含白氨基酸小多醣蛋白,基質蛋白,透明蛋白,斑馬魚,近視, | zh_TW |
| dc.subject.keyword | small leucine-rich proteoglycans,keratocan,lumican,zebrafish,myopia, | en |
| dc.relation.page | 153 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨生物細胞學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
