請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46472完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳士元(Shih-Yuan Chen,) | |
| dc.contributor.author | Shiou-Yi Shen | en |
| dc.contributor.author | 沈修毅 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:10:49Z | - |
| dc.date.available | 2010-07-27 | |
| dc.date.copyright | 2010-07-27 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-23 | |
| dc.identifier.citation | [1] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E.Yablonovitch, “High-impedance electromagnetic surfaces with a forbiddenfrequency band,” IEEE Trans. Microwave Theory Tech., Vol. 47, pp. 2059–2074, Nov. 1999.
[2] G. H. Zhang, N. C. Yuan, “Radiation characteristics improvement in waveguide-fed slot antenna with a high-impedance ground plane,” Microwave and Optical Technology Letters, Vol. 45, No. 2, pp. 176–179, 2005. [3] Y. C. Lee and J. S. Sun, “bow–tie antenna using high- impedance ground plane,” Microwave and Optical Technology Letters, Vol. 50, No. 11, pp. 2928–2931, November 2008. [4] F. Yang and R. S. Yahya, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications”, IEEE Trans Antennas Propagat Vol. 51, No. 10, pp. 2691–2703, October, 2003. [5] A. P. Feresidis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag., Vol. 53, No. 1, pp. 209–215, January, 2005. [6] G. Zhang, Y. Fu, C. Zhu, D. Yan, and N. Yuan, “A Circular Waveguide Antenna Using High-impedance Ground Plane,” IEEE Antennas and Wireless Propagat. Letters, Vol. 2, pp. 86-88, 2003. [7] C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. on Antennas and Propaga., Vol. 55, no. 7, pp. 1955–1962, 2007. [8] S. Zhu and R. Langley, “Dual-Band Wearable Textile Antenna on an EBG Substrate”, in IEEE Trans. on Antennas and Propagat., Vol. 57, no. 4, pp. 926-935, April 2009. [9] Y. Zhang, J. Hagen, M. Younis, “Planar Artificial Magnetic Conductors and Patch Antennas, “IEEE Trans. Antennas Propagat., Vol. 51, no. 10, pp. 2704-2712 October 2003 [10] L. I. Basilio, J. T.Williams, and D. R. Jackson, “The characterization of a slot discontinuity between two microstrip patch conductors,” in Proc. ICEAA’01, Torino, Italy, 2001, pp. 251–254. [11] C. A. Balanis, “Antenna Theory“, 3nd Ed., John Wiley & Sons, Inc., New York, 2005. [12] I. J. Bahl, and P. Bhartia, “Microwave solid-state design“, John Wiley & Sons, New York, 1988. [13] P. Y. Qian and T. Itoh, “A Broadband Uniplanar Microstrip-to-CPS Transition,” 1997 Asia Pacific Microwave Conference, pp. 609-612, [14] S. Y. Chen and P. Hsu, “Broadband Microstrip-Fed Modified Quasi-Yagi Antenna, ”Proceedings of 2005 IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, pp. 208-211, Hawaii, USA, Apr. 2005 [15] R. Li, T. Wu, B. Pan, K. Lim, “Equivalent-Circuit Analysis of a Broadband Printed Dipole with Adjusted Integrated Balun and an Array for Base Station Applications,” IEEE Trans. Antennas Propagat, Vol. 57, no. 7, pp. 2180-2184 July 2009 [16] IEEE Std. 1528-2003, recommended practice for determining the peak spatial-average specific absorption rate (SAR) in the human head from wireless communications devices—measurement techniques, 19 December 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46472 | - |
| dc.description.abstract | 本論文主要提出一種頻率可調整之穿戴式天線,並確保該天線不會朝向人體輻射而對使用者造成影響。首先,我們提出一種頻率可調整之高阻抗平面來抑制主要輻射源/天線的背向輻射,且維持整個天線結構的低姿態與保角特性。我們在週期性排列的塊狀金屬片之間焊上變電容二極體,改變其電容值來調整高阻抗平面的工作頻率。本論文設計了兩支寬頻天線作為主要輻射源,包含一領結型天線以及印刷式偶極天線陣列,將其分別擺放於前述高阻抗平面上,以達到低姿態、頻率可調整且單向輻射之要求。模擬和實驗結果皆證明了頻率可調的特性,背向輻射也有效的被抑制。最後,我們將天線結構彎曲以模擬該天線伏貼在手臂上的情形,發現該天線之效能並沒有因為彎曲而有太大的改變。此外,我們也討論了該天線的特定吸收比率(Specific Absorption Rate,簡稱SAR),模擬結果證實:由於使用高阻抗面,該天線之SAR 值確實大幅降低。綜合前述,我們相信該天線將可應用在穿戴式無線通訊系統上。 | zh_TW |
| dc.description.abstract | A frequency-agile, wearable antenna is presented in this thesis. To avoid the influences of the electromagnetic fields radiated on the user’s body while keeping the entire structure low-profile and conformal, we propose a frequency-agile high impedance surface (HIS), which is then integrated with the main radiator/antenna to suppress its backward radiation. The frequency agility is achieved by soldering varactor diodes between adjacent metallic patches that are periodically etched on a dielectric substrate with conductor backing. The operating frequency of the HIS can be tuned by changing the capacitance of the varactor diodes. For integration with the HIS, two broadband planar antennas, including a printed bow-tie antenna and a printed dipole array, are also presented in this thesis. By placing the printed antennas on the HIS respectively, two designs of frequency-agile, low-profile antennas with unidirectional radiation pattern are realized. Lastly, we bend the entire antenna conformally to a cylinder to simulate the situation that the antenna is attached onto a user’s arm. It is found that the performances of the antenna remain nearly unchanged. Moreover, the Specification Absorption Rate (SAR) of the antenna is also discussed. According to the simulation results, the SAR value is reduced significantly by using the HIS. Therefore, the proposed antenna may be suitable for use in body-worn wireless communication systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:10:49Z (GMT). No. of bitstreams: 1 ntu-99-R97942069-1.pdf: 26455073 bytes, checksum: d203fdad9ba19eebb6b8039263b416b9 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract vi Contents viii List of Figures x List of Tables xv Chapter 1 Introduction 1 1.1 Motivation and literature survey 1 1.2 Chapter outline 4 Chapter 2 Varactor-Loaded High Impedance Surface with Frequency Agility 5 2.1 Fundamentals of high impedance surface 5 2.2 Miniaturization of HIS using interdigital capacitors 9 2.3 Frequency-agile HIS 15 2.4 Bias network of the varactors 16 Chapter 3 Printed Dipole Antennas on Frequency-Agile HIS 18 3.1 Introduction of printed dipole antenna 18 3.1.1 Microstrip-fed bow-tie antenna 18 3.1.2 Printed dipole fed by an integrated balun 26 3.1.3 Printed dipole array 29 3.2 Frequency-agile HIS integrated with antennas 34 3.2.1 Chip-capacitor-loaded HIS integrated with printed bow-tie antenna 35 3.2.3 Varactor-loaded HIS integrated with printed dipole array 47 Chapter 4 Wearable Antenna on High Impedance Surface 55 4.1 Specific absorption rate (SAR) 55 4.2 Antenna attached onto a human arm 57 Chapter 5 Conclusion 66 5.1 Conclusion 66 5.2 Future works 67 References 68 | |
| dc.language.iso | en | |
| dc.subject | 穿戴式天線 | zh_TW |
| dc.subject | 頻率可調整 | zh_TW |
| dc.subject | 高阻抗平面 | zh_TW |
| dc.subject | 印刷式偶極天線 | zh_TW |
| dc.subject | printed dipole antennas | en |
| dc.subject | Frequency agility | en |
| dc.subject | high-impedance surfaces | en |
| dc.subject | wearable antennas | en |
| dc.title | 以高阻抗平面設計頻率可調整之穿戴式天線 | zh_TW |
| dc.title | Design of Frequency-Agile, Wearable Antenna Using
High-Impedance Surface | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許博文,陳俊雄,林育德,李學智 | |
| dc.subject.keyword | 頻率可調整,高阻抗平面,印刷式偶極天線,穿戴式天線, | zh_TW |
| dc.subject.keyword | Frequency agility,high-impedance surfaces,printed dipole antennas,wearable antennas, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 25.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
