Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張顏暉
dc.contributor.authorJun-Chang Wuen
dc.contributor.author吳俊昌zh_TW
dc.date.accessioned2021-06-15T05:09:27Z-
dc.date.available2012-07-27
dc.date.copyright2010-07-27
dc.date.issued2010
dc.date.submitted2010-07-23
dc.identifier.citation1 Li, Y.; Qian, F.; Xiang, J. & Lieber, C., ‘Nanowire electronic and optoelectronic devices’, Materials Today, 2006, 9, 18-27
2 Duan, X.; Huang, Y.; Agarwal, R. & Lieber, C., ‘Single-nanowire electrically driven lasers’, Nature, 2003, 421, 241-245
3 Barrelet, C.; Greytak, A. & Lieber, C., ‘Nanowire photonic circuit elements’, Nano Letters, 2004, 4, 1981-1985
4 Lee, C.; Lee, T.; Lyu, S.; Zhang, Y.; Ruh, H. & Lee, H., ‘Field emission from well-aligned zinc oxide nanowires grown at low temperature’, Applied Physics Letters, 2002, 81, 3648-3650
5 Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.; Aplin, D.; Park, J.; Bao, X.; Lo, Y. & Wang, D., ‘ZnO nanowire UV photodetectors with high internal gain’, Nano Letters, 2007, 7, 1003-1009
6 Wang, H.; Kang, B.; Ren, F.; Tien, L.; Sadik, P.; Norton, D.; Pearton, S. & Lin, J., ‘Hydrogen-selective sensing at room temperature with ZnO nanorods’, Applied Physics Letters, 2005, 86, 243503-243505
7 Alivisatos, P., ‘The use of nanocrystals in biological detection’, Nature Biotechnology, 2003, 22, 47-52
8 Cui, Y.; Wei, Q.; Park, H. & Lieber, C., ‘Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species’, Science, 2001, 293, 1289-1292
9 Feng, X. & Jiang, L., ‘Design and creation of superwetting/antiwetting surfaces’, Advanced Materials, 2006, 18, 3063-3078
10 Lu, W.; Xiang, J.; Timko, B.; Wu, Y. & Lieber, C., ‘One-dimensional hole gas in germanium/silicon nanowire heterostructures’, Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10046-10051
11 Qian, F.; Gradecak, S.; Li, Y.; Wen, C. & Lieber, C., ‘Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes’, Nano Letters, 2005, 5, 2287-2291
12 Oulton, R.; Sorger, V.; Genov, D.; Pile, D. & Zhang, X., ‘A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation’, Nature Photonics, 2008, 2, 496-500
13 Doh, Y.; Van Dam, J.; Roest, A.; Bakkers, E.; Kouwenhoven, L. & De Franceschi, S., ‘Tunable supercurrent through semiconductor nanowires’, Science, 2005, 309, 272-275
14 Han, S.; Zhang, D. & Zhou, C., ‘Synthesis and electronic properties of ZnO/CoZnO core-shell nanowires’, Applied Physics Letters, 2006, 88, 133109-133111
15 Wang, X.; Summers, C. & Wang, Z., ‘Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays’, Nano Letters, 2004, 4, 423-426
16 Johnson, J.; Yan, H.; Yang, P. & Saykally, R., ‘Optical cavity effects in ZnO nanowire lasers and waveguides’, The Journal of Physical Chemistry B, 2003, 107, 8816-8828
17 Zhu, Y.; Zhang, H.; Sun, X.; Feng, S.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. & Yu, D., ‘Efficient field emission from ZnO nanoneedle arrays’, Applied Physics Letters, 2003, 83, 144-146
18 Green, M.; Emery, K.; Hishikawa, Y. & Warta, W., ‘Solar cell efficiency tables (version 35)’, Progress in Photovoltaics: Research and Applications, 2010, 18, 144-150
19 Huang, Y.; Chattopadhyay, S.; Jen, Y.; Peng, C.; Liu, T.; Hsu, Y.; Pan, C.; Lo, H.; Hsu, C.; Chang, Y. & others, ‘Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures’, Nature Nanotechnology, 2007, 2, 770-774
20 Neumann, H.; Hörig, W.; Savelev, V.; Lagzdonis, J.; Schumann, B. & Kühn, G., ‘The optical properties of CuInS2 thin films’, Thin Solid Films, 1981, 79, 167-171
21 Fitzgerald, A. & Potrous, S., ‘A microbeam analysis study of heterojunctions formed with CuInS2 and CuInSe2’, Solar Energy Materials & Solar Cells, 1991, 22, 43-61
22 Bouazzi, A.; Loferski, J.; Kwietniak, M.; Arya, R. & Sosnowski, M., ‘Diffusion length determination in thin film CdS/CuInSe2 solar cells by the EBIC method’, Journal of Power Sources, 1984, 12, 167-172
23 Kayes, B.; Atwater, H. & Lewis, N., ‘Comparison of the device physics principles of planar and radial pn junction nanorod solar cells’, Journal of Applied Physics, 2005, 97, 114302-114312
24 Lauhon, L.; Gudiksen, M.; Wang, D. & Lieber, C., ‘Epitaxial core-shell and core-multishell nanowire heterostructures’, Nature, 2002, 420, 57-61
25 Colombo, C.; Hei, M.; Grätzel, M. & i Morral, A., ‘Gallium arsenide p-i-n radial structures for photovoltaic applications’, Applied Physics Letters, 2009, 94, 173108-173110
26 Tak, Y.; Hong, S.; Lee, J. & Yong, K., ‘Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion’, Journal of Materials Chemistry, 2009, 19, 5945-5951
27 Tian, B.; Zheng, X.; Kempa, T.; Fang, Y.; Yu, N.; Yu, G.; Huang, J. & Lieber, C., ‘Coaxial silicon nanowires as solar cells and nanoelectronic power sources’, Nature, 2007, 449, 885-889
28 Umar, A.; Ribeiro, C.; Al-Hajry, A.; Masuda, Y. & Hahn, Y., ‘Growth of Highly c-Axis-Oriented ZnO Nanorods on ZnO/Glass Substrate: Growth Mechanism, Structural, and Optical Properties’, The Journal of Physical Chemistry C, 2009, 113, 14715-14720
29 Peulon, S. & Lincot, D., ‘Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films’, Advanced Materials, 1996, 8, 166-170
30 Cui, J. & Gibson, U., ‘Enhanced nucleation, growth rate, and dopant incorporation in ZnO nanowires’, The Journal of Physical Chemistry B, 2005, 109, 22074-22077
31 Pauporté, T.; Jouanno, E.; Pellé, F.; Viana, B. & Aschehoug, P., ‘Key growth parameters for the electrodeposition of ZnO films with an intense UV-light emission at room temperature’, The Journal of Physical Chemistry C, 2009, 113, 10422-10431
32 Zhang, Z.; Meng, G.; Xu, Q.; Hu, Y.; Wu, Q. & Hu, Z., ‘Aligned ZnO Nanorods with tunable size and field emission on native Si substrate achieved via simple electrodeposition’, The Journal of Physical Chemistry C, 2010, 114, 189-193
33 Coskun, C.; Guney, H.; Emre, G. & Tuzemen, S., ‘Effective annealing of ZnO thin films grown by electrochemical deposition technique’, Turkish Journal of Physics, 2008, 32, 1-7
34 Park, S.; Clark, B.; Keszler, D.; Bender, J.; Wager, J.; Reynolds, T. & Herman, G., ‘Low-temperature thin-film deposition and crystallization’, Science, 2002, 297, 65
35 Pathan, H. & Lokhande, C., ‘Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method’, Bulletin of Materials Science, 2004, 27, 85-111
36 Yang, J.; , Jin, Z.; , Liu, T.; , Li, C. & , Shi, Y., ‘An investigation into effect of cationic precursor solutions on formation of CuInSe2 thin films by SILAR method’, Solar Energy Materials & Solar Cells, 2008, 92, 621-627
37 Yang, J.; , Jin, Z.; Chai, Y.; Du, H.; Liu, T. & Wang, T., ‘Growth and characterization of CuInSe2 thin films prepared by successive ionic layer adsorption and reaction method with different deposition temperatures’, Thin Solid Films, 2009, 517, 6617-6622
38 Shi, Y.; Jin, Z.; Li, C.; An, H. & Qiu, J., ‘Effects of post-heat treatment on the characteristics of chalcopyrite CuInSe2 film deposited by successive ionic layer absorption and reaction method’, Thin Solid Films, 2007, 515, 3339-3343
39 Studenikin, S.; Golego, N. & Cocivera, M., ‘Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis’, Journal of Applied Physics, 1998, 84, 2287-2294
40 Djurišić, A.; Leung, Y.; Tam, K.; Ding, L.; Ge, W.; Chen, H. & Gwo, S., ‘Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength’, Applied Physics Letters, 2006, 88, 103107-103109
41 Zhou, H.; Alves, H.; Hofmann, D.; Kriegseis, W.; Meyer, B.; Kaczmarczyk, G. & Hoffmann, A., ‘Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure’, Applied Physics Letters, 2002, 80, 210-212
42 Roh, S.; Mane, R.; Pathan, H.; Joo, O. & Han, S., ‘Rapid growth of nanocrystalline CuInS2 thin films in alkaline medium at room temperature’, Applied Surface Science, 2005, 252, 1981-1987
43 Timoumi, A.; Bouzouita, H.; Kanzari, M. & Rezig, B., ‘Fabrication and characterization of In2S3 thin films deposited by thermal evaporation technique’, Thin Solid Films, 2005, 480, 124-128
44 Thomas, D., ‘ Infrared absorption in zinc oxide crystals ’, Journal of Physics and Chemistry of Solids, , 1959, 10, 47-51
45 Binsma, J.; Giling, L. & Bloem, J., ‘ Luminescence of CuInS2: I. The broad band emission and its dependence on the defect chemistry ’, Journal of Luminescence, , 1982, 27, 35-53
46 Barreau, N.; Marsillac, S.; Albertini, D. & Bernede, J., ‘Structural, optical and electrical properties of β-In2S3-3xO3x thin films obtained by PVD’, Thin Solid Films, 2002, 403, 331-334
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46446-
dc.description.abstract半導體奈米電子、光電、光伏元件等的研究近年來吸引了許多研究工作者的注意。奈米結構具有很高的表面積/體積比,因此比起塊材製造的元件,它在各類的元件上都被期待會有更好的效能。由於奈米柱陣列具有優秀的光捕捉性質,因此使用奈米柱陣列可以用來增加太陽能電池的效率。在眾多奈米材料中,由於氧化鋅奈米柱具有高透光性、高折射係數、材料成本低廉、無毒性、環保等優點,因此是最被廣泛研究的系統。
本論文第一部份首先研究以低溫、低成本的電鍍法成長氧化鋅奈米柱。結果顯示低溫下成長的奈米柱仍然有很好的結晶品質。並且藉由調控成長環境,諸如鋅離子濃度、電鍍電流、成長時間、壓力、溶解氣體等等,可以成長出不同形貌的奈米柱。
在第二部分我們使用低成本的連續離子層吸附反應方法,在室溫下成功地沈積In2S3和CuInS2薄膜於奈米柱基板上。從光學量測上我們得知ZnO/ In2S3/CuInS2核殼奈米柱陣列,對紫外光至近紅外光具有非常好的光吸收性,僅20 nm厚度的CIS殼吸收層,就能將可見光穿透率降至0.15 %以下。此外,從電性量測結果,我們也發現核殼結構在光電元件上具有值得期待的潛力。
zh_TW
dc.description.abstractSemiconductor nanostructures have attracted much attention recently because their potential application in making electronic, optoeletronic and photovoltaic devices. Nanostructure has high surface-to-volume ratio which makes it more useful than ordinary devices made of bulk material. In addition the nanorods arrary has very good light-trapping effect and can be used to improve the efficiency of solar cells. Among the many nanomaterials, zinc oxide nanorod has been the most extensively studied one because it is transparent to visible light, has high refractive index, easy to manufacture, non-toxic and friendly to environment.
In this study, large-area zinc-oxide nanorods array were grown by electrodeposition. The results show that zinc-oxide nanorods array with good crystalline quality can be obtained at low-temperature. In addition, we also found that ZnO nanorods of different morphologies can be obtained by controlling growth condition such as growth time, pressure, concentration of Zn2+, applied current, dissolved gas, etc.
Following the growth of ZnO nanorods, ZnO/In2S3/CuInS2 (CIS) core-shell nanorods array were prepared by successive ionic layer adsorption and reaction (SILAR) method. In the optical measurements, the core-shell CIS nanorods array shows a remarkable absorption from visible to near-infrared light. Only 0.15% of visible light can transmit through a 20nm-thick CIS shell which was grown on the top of ZnO nanorods array. In addition, from photoelectrical measurements, we find that the ZnO/ In2S3/CuInS2 system has the desired probability for making an useful optoelectronic devices.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:09:27Z (GMT). No. of bitstreams: 1
ntu-99-R97222050-1.pdf: 9410534 bytes, checksum: e2efaeed4fd3cea061937beca65ee426 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 i
致 謝 ii
摘 要 iii
Abstract iv
目 錄 v
圖目錄 vii
第1章 緒論 1
1.1 引言 1
1.1.1 一維半導體奈米結構簡介 1
1.1.2 氧化鋅奈米柱 1
1.1.3 太陽能電池 2
1.1.4 核殼奈米柱結構於太陽能電池上的優點 2
1.2 研究動機與目的 3
第2章 基本原理介紹 4
2.1 太陽能電池 4
2.1.1 pn接面 4
2.1.2 pn接面電流 7
2.1.3 半導體缺陷造成的載子複合行為 9
2.1.4 逆向偏壓產生電流和順向偏壓複合電流 12
2.1.5 異質pN接面 13
2.2 總結 15
第3章 實驗方法 16
3.1 電鍍法成長氧化鋅奈米柱 16
3.1.1 電鍍氧化鋅奈米柱步驟 16
3.2 連續離子層吸附反應法成長薄膜材料 18
3.2.1 SILAR成長In2S3薄膜 19
3.2.2 SILAR成長CuInS2薄膜 20
3.3 分析儀器系統 20
第4章 結果與討論 22
4.1 電鍍法成長氧化鋅奈米柱 22
4.1.1 溫度的影響 25
4.1.2 Zn2+ 濃度的影響 26
4.1.3 電流的影響 29
4.1.4 溶解氣體的影響 30
4.1.5 其它成長環境下的各種奈米柱形貌 32
4.2 SILAR沈積CuInS2薄膜 33
4.3 ZnO/In2S3/CuInS2 核殼奈米柱陣列 37
4.3.1 核殼奈米柱陣列形貌及外觀 37
4.3.2 穿透光譜 39
4.4 pN核殼奈米柱陣列的光電流量測 41
4.4.1 電流電壓曲線 41
4.4.2 IPCE 42
4.4.3 光電流在不同偏壓下的時間響應 43
第5章 結論 46
參考文獻 47
dc.language.isozh-TW
dc.subject氧化鋅zh_TW
dc.subject連續離子層吸附反應zh_TW
dc.subject電鍍zh_TW
dc.subject光偵測器zh_TW
dc.subject太陽能電池zh_TW
dc.subject二硫化銅銦zh_TW
dc.subject硫化銦zh_TW
dc.subject奈米柱陣列zh_TW
dc.subject核殼結構zh_TW
dc.subjectSILARen
dc.subjectsolar cellen
dc.subjectCuInS2en
dc.subjectIn2S3en
dc.subjectcore-shellen
dc.subjectZnOen
dc.subjectphotodetectoren
dc.subjectnanorods arrayen
dc.subjectelectrodepositionen
dc.title以電鍍法成長氧化鋅奈米柱陣列及應用於製成太陽能電池之研究zh_TW
dc.titleA study on the zinc oxide nanorods array grown by electrodeposition and its application in making solar cell arrayen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永芳,梁啟德
dc.subject.keyword奈米柱陣列,氧化鋅,核殼結構,硫化銦,二硫化銅銦,太陽能電池,光偵測器,電鍍,連續離子層吸附反應,zh_TW
dc.subject.keywordnanorods array,ZnO,core-shell,In2S3,CuInS2,solar cell,photodetector,electrodeposition,SILAR,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2010-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
9.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved