Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46440
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳郁蕙(Yu-Hui Chen)
dc.contributor.authorI-Chieh Wangen
dc.contributor.author王怡絜zh_TW
dc.date.accessioned2021-06-15T05:09:07Z-
dc.date.available2013-07-28
dc.date.copyright2010-07-28
dc.date.issued2010
dc.date.submitted2010-07-25
dc.identifier.citation丁建庭、申家恒、李偉、楊虹,2009。「水稻雙受精過程的細胞形態學籍時間進程的觀察」,『植物學報』。第44卷,第4期,473-483。
中央氣象局全球資訊網,2010。http://www.cwb.gov.tw/。
中華人民共和國環境保護部,2010。http://kjs.mep.gov.cn/hjbhbz/bzwb/other/qt/199206/t19920601_67580.htm。
行政院農業委員會農糧署,2010。http://www.afa.gov.tw/。
你吃飯了嗎?!,2008。http://www.peopo.org/happyginger88/trackbacks/24996。
呂川根、鄒江石、胡凝、姚克敏,2005。「亞種間雜交稻穎花受精率與溫度的相關性及模型分析」,『應用生態學報』。第16卷,第6期,1026-1032。
余祁暐,2008。「農業生技國家型科技計畫成果盤點分析」,『農業生技產業季刊』。13期,61-67。
李仁忠、劉壽東、胡凝,2007。「轉基因水稻花粉擴散模擬方法研究」,『內蒙古氣象』。第4期,31-34。
李尚仁,2004。「英國基因改造作物爭議」,『科學發展』。374期,81-82。
李訓貞、梁滿中、周廣洽、陳良碧,2002。「水稻開花時的環境條件對花粉活力和結實的影響」,『作物學報』。第28卷,第3期,417-420。
李雅萍、黃慧嫺、鄭師安、劉憶成、陳郁庭、楊一晴、李森堙,2007。「建構我國基因改造科技法制協調架構計畫」。行政院科技顧問組。資策會科技法律中心。
李雅萍、黃慧嫺、陳郁庭、楊一晴、李森堙、葉鼎煜,2008。「我國基因改造科技法制研擬暨推動計畫」。行政院科技顧問組。資策會科技法律中心。
李雅萍、黃慧嫺、陳郁庭、楊一晴、李森堙,2009。「我國基因改造科技法制研擬暨推動計畫(第二年)」。行政院科技顧問組。資策會科技法律中心。
周明諒、謝禮丞、、欒家敏、謝廣文,2003。「水稻田變率施肥機之研製」,『農業機械學刊』。第12卷,第3期,61-76。
林惠玲、陳正倉,2003。『應用統計學二版』。台北市:雙葉書廊。
邱運全、吳志文,2004。「水稻新品種—高雄144號(勝光)」,『高雄區農業改良場研究彙報』。第15卷,第3期,1-12。
郭華仁,2007。「基改作物生產的共存法規」,行政院農業委員會農糧署。
陳友剛,1994。「作業場所懸浮微粒的危害與控制」,『勞工安全衛生簡訊』。第7期,1-4。
陳奕穎,2004。「發展遙測資料反演可感熱與潛熱通量之研究」。碩士論文,中央大學水文科學研究所。
陳郁蕙、陳重江、李武忠、郭華仁。「基改稻米基因流散風險與隔離距離之探討」,2008。『科技報導』,9月15日,15-17版。
陳郁蕙、蘇明道、郭華仁、曾清山、陳雅惠,2010。「基改作物經濟利益、風險與社會偏好之系統分析—以基改產植酸酶水稻為例」。行政院農業委員會。NSC 98-3114-Y-002-001-。國立臺灣大學生物多樣性研究中心。
曾清山、吳明哲、黃鴻章、賴明信、陳治官,2008。「轉殖植酸酵素基因水稻之農藝性狀及田間生物安全性評估」,『台灣農業研究』。第57卷,第3期,175-182。
曾清山、賴明信、顏信沐、卓緯玄、陳治官,2007。「轉殖水稻花粉擴散之田間評估」。中華農藝學會96年年會作物科學講座暨研究成發表會論文宣讀。pp.42。
顏應成、袁隆平,1997。「水稻廣譜廣親和系零輪的選育與研究」,『雜交水稻』。第12卷,第1期,7-10。
Amand, P.C. St., D.Z. Skinner, and R.N. Peaden, 2000. “Risk of alfalfa transgene dissemination and scale-dependent effects,” Theor Appl Genet.. 101:107-114.
Brunet, Y., S. Dupont, S. Delage, M.D. Luca, P. Tulet, J.P. Pinty, C. Lac, J. Escobar, and X. Foueillassar, 2009. “Mesoscale dispersal of pollen and implications for gene flow,” Paper presented at the Fourth International Conference on Coexistence between Genetically Modified(GM) and non-GM based Agricultural Supply Chains. Australia, Melbourne Convention & Exhibition Centre, November 10-12.
Chen, M., J.Z. Zhao, G.Y. Ye, Q. Fu and A.M. Shelton, 2006. Impact of insect-resistant transgenic rice on target insect pests and non-target arthropods in China. Journal of insect science. 13:409-420.
Chiang, C.M., F.S. Yeh, T.H. Tseng, C.S. Wang, H.S. Lur, J.F. Shaw, and S.M. Yu, 2005. Expression of a bifunctional and thermostatble amylopullulanase in transgenic rice seeds leads to starch autohydrolysis and altered compositeon of starch. Molecular Breeding. 15:125-143.
Dijk, H.V., 1987. “A method for the estimation of gene flow parameters from population structure caused by restricted gene flow and genetic drift,” Theor Appl Genet.. 73:724-736.
Guo, Y., L. Zhang, G. Xiao, S.Y. Cao, D.M. Gu, W.Z. Tian, and S.Y. Chen, 1997. “Expression of betaine aldehyde dehydrogenase gene and Salinity tolerance in rice transgenic plants.” Science in China. 27(2): 151-155.
Hansen, L.B., H.R. Siegismund, and R.B. Jorgenson, 2001. “Introgression between oilseed rape(Brassica napus L.) and its weedy relative B. rapa L. in a natural population,” Genet Resour Crop Evol.. 48:621-627.
High, S.M., M.B. Cohen, Q.Y. Shu and A. Illimar, 2004. Achieving successful deployment of Bt rice. Trends Plant Science. 9:286-292.
Hong, C.Y., K.J. Cheng, T.H. Tseng, C.S. Wang, L.F. Liu, and S.M. Yu, 2004. Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res. 13:29-39.
Huang, J.K., S. Rozelle, C. Pray, and Q.F. Wang, 2002. Plant biotechnology in China. Science. 295:674-677.
Hüsken, A., R. Bock, X. Pinochet, P. Stamp, J. Schiemann, 2009. “Biological measures for pollen mediated gene flow mitigation,” Paper presented at the Fourth International Conference on Coexistence between Genetically Modified(GM) and non-GM based Agricultural Supply Chains. Australia, Melbourne Convention & Exhibition Centre, November 10-12.
Information Systems for Biotechnology, 2010. http://www.isb.vt.edu/cfdocs/biocharts1.cfm
James, C., 2008. Global Status of Commercialized Biotech/GM Crops: 2008. ISAAA Briefs No.39. ISAAA: Ithaca, NY.
Jia, H., K.S. Jayaraman, and S. Louet, 2004. China ramps up efforts to commercialize GM rice. Nature Biotechnology. 22:642.
Jia, S., F. Wang, L. Shi, Q. Yuan, W. Liu, Y. Liao, S. Li W. Jin, and H. Peng, 2007. “Transgene flow to hybrid rice and its male-sterile lines,” Transgenic Res. 16:491-501.
Kawahigashi, H., S. Hirose, H. Ohkawa, and Y. Ohkawa, 2007. Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnology Advances. 25:75-84.
Klein, E.K., C. Lavigne, X. Foueillassar, P.H. Gouyon, and C. Larédo, 2003. “Corn pollen dispersal: Quasi-mechanistic models and field experiments,” Ecological Monographs. 73(1):131-150.
Lavigne, C., E.K. Klein, P. Vallee, J. Pierre, B. Godelle, and M. Renard, 1998. “A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field,” Theor Appl Genet.. 96:886-896.
Li, R.T., Z.M. Zhang, and Q.F. Zhang, 2002. Transformation of japonica rice with RHL gene and salt tolerance of the transgenic rice plant. Chinese Science Bulletin. 47(8):613-617.
Majee, M., S. Maitra, K. Ghose, S. Pattnaik, A. Chatterjee, N. Hait, K.P. Das, and A.L. Majumder, 2004. A novel salt-tolerant L-myo-inositoll-phosphate synthase from Porteresia coarctata Tateoka, a hylophytic wild rice: Molecular cloning, bacterial overexpression, characterization and functional introgression into tobacco conferring salt-tolerance phenotype. Journal of Biological Chemistry. 279(27):28539-28552.
Mizuguti, A., Y. Yoshimura, and K. Matsuo, 2009. “Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions,” Weed Biology and Management. 9:93-96.
Rong, J., B.R. Lu, Z. Song, J Su, A.A. Snow, X Zhang, S. Sun, R. Chen, F. Wang, 2007. “Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields,” New Phytologist. 173:346-353.
Shivrain, V.K., N.R. Burgos, D.R. Gealy, K.A.K. Moldenhauer, and C.J. Baquireza, 2008. “Maximum Outcrossing Rate and Genetic Compatibility between Red Rice (Oryza sativa) Biotypes and ClearfiledTM Rice,” Weed Science. 56(6):807-813.
Song, Z.P., B.R. Lu, Y.G. Zhu, and J.K. Chen, 2003. “Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions,” New Phytologist. 157:657-665.
Spijkerboer, H.P., J.E. Beniers, D. Jaspers, H.J. Schouten, J. Goudriaan, R. Rabbinge, W. van der Werf, 2002. Ability of the Gaussian plume model to predict and describe spore dispersal over a potato crop. Ecological Modelling. 155:1-18.
Tsay, J.Y., R.B. Chen, J.C. Chang, C.H. Liao, H.Y. Yang, S.R. Wang, and L.J. Chen, 2001. Production of porcine lactoferrin in transgenic rice. The 3rd Cross-strait Symposium on Plant Molecular Biology and Biotechnology, Hong Kong, 5-11 August 2001.
Tufto, J., S. Engen, and K. Hindar, 1997. “Stochastic Dispersal Processes in Plant Populations,” Theoretical Population Biology. 52:16-26.
Umweltbundesamt GmbH, 2010. http://www.umweltbundesamt.at/en/umweltschutz/gentechnik/freisetzungen/eu1/
Viner, B.J., and R.W. Arritt, 2010. “A Model to Predict Diurnal Pollen Shed in Maize,” Crop Sci. 50:235-245.
Viner, B.J., and R.W. Arritt, 2009. “Combining a Mesoscale Dynamic Model with a Lagrangian Dispersion Model to Simulate Dispersion in Complex Terrain,” Paper presented at the Fourth International Conference on Coexistence between Genetically Modified(GM) and non-GM based Agricultural Supply Chains. Australia, Melbourne Convention & Exhibition Centre, November 10-12.
Wang, F., Q.H. Yuan, L. Shi, Q. Qian, W.G. Liu, B.G. Kuang, D.L. Zeng, Y.L. Liao, B. Cao, and S.R. Jia, 2006. “A large-scale field study of transgene flow from cultivated rice(Oryza sativa) to common wild rice(O. rufipogon) and barnyard grass (Echinochloa crusgalli),” Plant Biotechnology Journal. 4:667-676.
Yao, K.M., N. Hu, W.L. Chen, R.Z. Li, Q.H. Yuan, F. Wang, Q. Qian, S.R. Jia, 2008. “Establishment of a rice transgene flow model for predicting maximum distances of gene flow in southern China,” New Phytologist. 180:217-228.
Yonemura, S., S. Kawashima, H. Ogiwara, and H. Shibaike, 2009. “Estimation of both rice pollination rates under normal conditions at Tsukuba Japan and mixture rates between simulated GM rice and non-GM rice by co-use of harvester machine,” Paper presented at the Fourth International Conference on Coexistence between Genetically Modified(GM) and non-GM based Agricultural Supply Chains. Australia, Melbourne Convention & Exhibition Centre, November 10-12.
Yoshimura, Y., K. Matsuo, and K. Yasuda, 2006. “Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan,” Environ. Biosafety Res.. 5:169-173.
Yuan, Q.H., L. Shi, F. Wang, B Cao, Q. Qian, X.M. Lei, Y.L. Liao, W.G. Liu, L. Cheng, and S.R. Jia, 2007. “Investigation of rice transgene flow in compass sectors by using male sterile line as a pollen detector,” Theor Appl Genet. 115:549-560.
Zhang, N., S. Linscombe, and J. Oard, 2003. “Out-crossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice,” Euphytica. 130:35-45.
Zhai, W.X., X.B. Li, W.Z. Tian, Y.L. Zhou, X.B. Pan, S.Y. Cao, X.F. Zhao, B. Zhao, Q. Zhang, and L.H. Zhu, 2000. Introduction of a rice blight resistance gene, Xa21, into five Chinese rice varieties through an Agrobacterium-mediated system. Science in China. 30(2):200-206.
Zhang, Q.J., C.G. Lu, S.J. Xia, S.Y. Zong, Q.M. Qi, D.R. Yu, and Y.H. Sun, 2008. Obtaining transgenic rice plants harboring sbk and sck insecticidal genes. Molecular Plant Breeding. 6(1):49-52.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46440-
dc.description.abstract基因改造技術自1973年試驗成功以來,無論在科學發展與社會議題上皆受到深切關注,農業也在1984年獲得基改菸草後正式踏入基因改造科技領域。基因改造技術雖具有許多優點,在發展基改作物之同時卻可能存在影響生物多樣性之基因流佈風險,故各國對種植基改作物設有不同之規範。主要國家雖設定不同之種植隔離距離以避免基因流佈風險,卻未提出足夠之科學證據以說明訂定標準,本研究建立基因改造水稻之基因流佈風險分析模型,提供政府在進行相關基因改造水稻種植規範時參考。本研究蒐集國內外田間試驗資料,建立水稻基因流佈風險資料庫,以不同三種模型進行分析,估計結果顯示對數-對數模型最能適當描述基因流佈率與距離間之關係,利用此估計結果,進一步探討在不同基因流佈係數與標準差之下,基因流佈風險的範圍。為進一步將氣候因素如風速、風向、大氣穩定度等納入考量,本研究雖以高斯煙羽模型(Gaussian plume model, GPM)為基礎,但由於過去研究在進行花粉擴散模擬時之變數設定之假設有誤,故本研究針對水稻之生物特性做修正,建立新的水稻花粉擴散模型,並將基因流佈風險議題往前推至花粉擴散層面。證實花粉擴散與基因流佈情形間存在相關性,若利用花粉擴散模型模擬之結果,以花粉等濃度線進行隔離田區之規劃將較以固定隔離距離規劃隔離田區之方式更具經濟效益,節省農地與隔離成本之浪費。zh_TW
dc.description.abstractSince the first success in 1973, genetic engineering has kept catching people concern no matter in the science or social issues. And because of the success in genetic modified tobacco in 1984, agriculture had steped in the region of genetic modified. Although there’re advantages in genetic engineering, it also has some risks that we cannot ignore such as gene flow. Thus, governments have setted different regular with repect to genetic modified crops planting. The main countries decided to set the isolation distance or/and the GM threshold. However, there’s no sufficient scientific evidence had provided to explain their setting standards. According to this, our study established a model of gene flow analysis on genetically modified rice, in order to provide the government some information on the GMO-about law setting process. To establish the gene flow database of paddy rice, our study first collected field trials data from literatures, then using different models to find out the relationship between gene flow and isolation distances under different variable sets. Base on the results, the double-log type had the best ability in explaning the relation between gene flow and isolation distances. Further, we used the results to discuss the range of gene flow under different coefficients of isolation distances and standard errors. To including the weather factor, such as windspeed, wind direction, and atmospheric stability, etc., we established the pollen dispersion model of paddy rice based on Gaussian Plume Model (GPM) made the gene flow issue extend to the pollen dispersion level. In the simulating process, we found that the assumption used before had a huge mistake. Thus, our study corrected the assumption used before according to the paddy rice’s biological characters. The result proves that the issue of pollen dispersion is important for the issue of gene flow. Further, if we use the iso-density curves from the simulation results, we can make a more effective, land-saving and cost-saving isolation region.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:09:07Z (GMT). No. of bitstreams: 1
ntu-99-R97627002-1.pdf: 1437445 bytes, checksum: e2990164960b7aed635049c39587398a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌 謝 i
摘 要 ii
Abstract iii
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究方法 4
第三節 論文架構 4
第二章 基因改造作物產業背景介紹 5
第一節 世界基因改造作物產業背景介紹 5
第二節 我國基因改造產業發展概況 9
第三章 文獻回顧 16
第一節 田間試驗相關文獻 16
第三節 小結 22
第四章 計量方法理論模型與實證分析 27
第一節 複迴歸模型 27
第二節 實證分析 30
第三節 小結 44
第五章 花粉擴散模型與模擬 45
第一節 花粉擴散模型 45
第二節 花粉擴散模型修正 49
第三節 水稻花粉擴散模擬 50
第四節 小結 59
第六章 結果與討論 60
第八章 結論與建議 78
參考文獻 81
dc.language.isozh-TW
dc.subject基改作物zh_TW
dc.subject基因流佈風險zh_TW
dc.subject水稻zh_TW
dc.subject花粉擴散zh_TW
dc.subject高斯煙羽模型zh_TW
dc.subject隔離距離zh_TW
dc.subjectisolation distancesen
dc.subjectgenetically modified cropsen
dc.subjectgene flowen
dc.subject paddy riceen
dc.subjectpollen dispersionen
dc.subjectGaussian plume model (GPM)en
dc.title基因改造作物之基因流佈風險分析模型:以水稻為例zh_TW
dc.titleModeling the Gene Flow of Genetically Modified Crops: A Case Study on Paddy Riceen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee傅子煜,李俊鴻
dc.subject.keyword基改作物,基因流佈風險,水稻,花粉擴散,高斯煙羽模型,隔離距離,zh_TW
dc.subject.keywordgenetically modified crops,gene flow, paddy rice,pollen dispersion,Gaussian plume model (GPM),isolation distances,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2010-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業經濟學研究所zh_TW
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved