請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46426完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張樹城(Shu-Cheng Chang) | |
| dc.contributor.author | Jen-Fu Chung | en |
| dc.contributor.author | 鍾振甫 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:08:27Z | - |
| dc.date.available | 2010-08-10 | |
| dc.date.copyright | 2010-08-10 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-23 | |
| dc.identifier.citation | [1] B. S. Guilfoyle, Einstein Metrics Adapted to Contact Structure on 3-Manifolds. 2000, Preprint
[2] J. Jost, Riemannian Geometry and Geometric Analysis 5th ed.. 2008,Springer [3] M. P. do Carmo, Riemannian Geomrtry. 1992, Birkhauser [4] S. C. Chang and H. L. Chiu, Nonnegativity of CR Paneitz Opearator and Its Application to the CR Obata's Theorem. 2009, Math. Ann. Vol.345:33-51 [5] S. C. Chang and H. L. Chiu, On the CR Analogue of Obata's Theorem in a Pseudohermitian 3-Manifold. 2009, J. Geom. Anal. Vol.19: 261-287 [6] S. Dragomir and G. Tomassini, Di erential Geometry and Analysis on CR Manifolds. 2000, Birkhauser | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46426 | - |
| dc.description.abstract | 在本篇論文之中,我們不僅證明一些在3 維流形上適應切觸微分形式的存在性理論,也計算出在Webster 度量之下,奇數維流形的里奇曲率。在這裡我們假設扭率為常數。 | zh_TW |
| dc.description.abstract | In this paper, we not only show that some existence theories of adapted contact 1-forms on 3-manifolds but also compute Ricci curvature of odd dimensional manifolds with respect to Webster metric. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:08:27Z (GMT). No. of bitstreams: 1 ntu-99-R97221017-1.pdf: 759172 bytes, checksum: 36d6520286d1cda1eb13f1a49f5a64f6 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 1. Introduction----------------------------------------------1 2. Proof of Main Theorem-------------------------------------5 2.1. Einstein 3-Manifolds------------------------------------5 2.2. 3-Manifolds with Constant Scalar Curvature--------------7 2.3. 3-Manifolds with Positive Scalar Curvature--------------8 2.4. Higher Dimensional Manifolds----------------------------9 Reference---------------------------------------------------23 | |
| dc.language.iso | en | |
| dc.subject | 切觸幾何 | zh_TW |
| dc.subject | 微分幾何 | zh_TW |
| dc.subject | Contact Geometry | en |
| dc.subject | Differential Geometry | en |
| dc.title | 適應切觸微分形式的存在性 | zh_TW |
| dc.title | Existence of Adapted Contact 1-Forms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王藹農(Ai-Nung Wang),鄭日新(Jih-Hsin Cheng) | |
| dc.subject.keyword | 微分幾何,切觸幾何, | zh_TW |
| dc.subject.keyword | Differential Geometry,Contact Geometry, | en |
| dc.relation.page | 23 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 741.38 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
