Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46408
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅筱鳳,曹幸之
dc.contributor.authorYi-Meng Hsiehen
dc.contributor.author謝易甍zh_TW
dc.date.accessioned2021-06-15T05:07:33Z-
dc.date.available2016-09-15
dc.date.copyright2011-09-15
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citation1. 方煒. 1998. 植物工廠. 種苗生產自動化技術通訊. 第三期第98001號. 種苗生產自動化技術服務團. 臺北:財團法人農業機械化研究發展中心.
2. 王銀波. 1989. 培養液的化學性及其管理. 養液栽培技術講習會專刊第二輯. pp.60-68.
3. 沈再發. 1997. 養液之配製與管理. 設施園藝技術 pp.182-190.
4. 李郁淳. 2006. 氯化銨處理對尖葉萵苣及小白菜生育及硝酸鹽含量之影響. 國立中興大學碩士論文.
5. 林棟樑. 2005. 萵苣. 台灣農家要覽農作篇(二) pp.409-412.
6. 林岱平. 2006. 在亞熱帶生產低硝酸鹽蔬菜-主婦聯盟生活消費合作社檢驗資料之分析. 國立臺灣大學園藝所碩士論文.
7. 柯勇. 2004. 植物生理學. 第一版. 臺北. 藝軒圖書出版社.
8. 高德錚. 1991. 動態浮根式水耕系統之開發與利用. 初版. 臺灣省臺中區農業改良場. 彰化.
9. 高德錚. 1986. 水耕栽培-精緻蔬菜生產技術之開發. 臺中區農推專訊 56:22-31.
10. 高德錚. 1988. 精緻農業水耕栽培技術. 行政院青年輔導委員會. 台北.
11. 郭孚燿. 1998. 遮陰及氮肥對芥藍菜硝酸鹽累積之影響. 臺中區農業改良場研究彙報58:59-66.
12. 倪禮豐、鍾仁賜. 1997. 採收時間及遮陰對芥藍菜(Brassica oleracea L.)氮組成及硝酸還原酵素活性的影響. 花蓮區研究彙報 14:61-76.
13. 張祖亮. 1998. 養液栽培之應用技術. 種苗生產自動化技術通訊. 第三期第98003號. 種苗生產自動化技術服務團. 臺北:財團法人農業機械化研究發展中心.
14. 張簡秀容. 1999. 葉萵苣栽培管理. 臺灣農業 Vol.35 No.1.
15. 蔡尚光. 1991. 植物工場. 初版. 臺北:淑馨出版社.
16. 戴振洋. 2005. 芫荽. 台灣農家要覽農作篇(二)pp.415-418.
17. 高辻正基. 1987. 植物工場入門. 才一ㄙ社. 東京都. 日本.
18. Abu-Rayyan, A., B.H Kharawish, and K. Al-Ismail. 2004. Nitrate content in lettuce (Lactuca sativa L.) heads in relation to plant spacing, nitrogen form and irrigation level. J Sci Food Agr. 84:931-936.
19. Alberici, A., E. Quattrini, M. Penati, and M. Schiavi. 2008. Effect of the reduction of nutrient solution concentration on leafy vegetables quality grown in floating system. Acta Hort. 801:1167-1176.
20. Alfocea, F. P., M.T. Estan, A.S. Cruz, and M. Bolarin. 1993. Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants. J. Hort. Sci. 68:1021-1027.
21. Allegre, A., J. Silvestre, P. Morard, J. Kallerhoff, and E. Pinelli. 2004. Nitrate reductase refulation in tomato roots by exogenous nitrate: a possible role in tolerance to long-term root anoxia. J. Exp. Bot. 55:2625-2634.
22. Aparicio, P.J., J.M. Rolddn, and F. Calero. 1976. Blue light photoreactivation of nitrate reductase from green algae and higher plants. Biochem. Biophys. Res. Commun. 70:1071-1077.
23. Auerswald1, H., D. Schwarza, C. Kornelson, A. Krumbein1, and B. BruEckner. 1999. Sensory analysis, sugar and acid content of tomato at different EC values of the nutrient solution. Scientia Hort. 82:227-242.
24. Ban, D., S. Goreta, and J. Borosic. 2006. Plant spacing and cultivar affect melon growth and yield components. Scientia Hort. 109:238-243.
25. Blom-Zandstra, M. and J. E. M. Lampe. 1985. The role of nitrate in the osmoregulation of lettuce (Lacluca saliva L.) grown at different light intensities. J. Exp. Bot. 36:1043-1052.
26. Boroujerdnia, M. and N.A. Ansari. 2007. Effect of different levels of nitrogen fertilizer and cultivars on growth, yield and yield components of romaine lettuce (Lactuca sativa L.). Middle Eastern and Russian J. Plant Sci. Biotechnol. 1:47-53.
27. Borowski, E. and S. Michałek. 2008. The effect of nitrogen form and air temperature during foliar fertilization on gas exchange, the yield and nutritive value of spinach (Spinacia oleracea L.). Folia Hort. 20:17-27.
28. Bruggink, G.T. and E. Heuvelink. 1987. Influence of light on the growth of young tomato, cucumber and sweet pepper plants in the greenhouse: effects on relative frowth rate, net assimilation rate and leaf area ratio. Scientia Hort. 31:161-174.
29. Buwalda1, F. and M. Warmenhoven. 1999. Growth-limiting phosphate nutrition suppresses nitrate accumulation in greenhouse lettuce. J. Exp. Bot. 50:813-821.
30. Calatayud, A., E. Gorbe, D. Roca, and P.F. Martnez. 2008. Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environ. Expt. Bot. 64:65-74.
31. Caldwell, C.R. and S.J. Britz. 2006. Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. J. Food Composition Anal. 19:637-644.
32. Camacho-Cristobal, J.J. and A. Gonzalez-Fontes. 1999. Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta 209:528-536.
33. Cantliffe, D.J., G.E. MacDonald, and N.H. Peck. 1974. Reduction in nitrate accumulation by molybdenum in spinach grown at low pH. Commun. Soil Sci. Plant Anal. 5:273-282.
34. Carrasco, S., S.W. Burrage, and D. Kazakidou. 1994. Nitrate accumulation in red chicory (cichorium intybus L.) grown at a low level of light intensity. Acta Hort. 361:274-281.
35. Cataldo, D.A.,M. Haroon, L.E. Schrader, and V.L. Youngs. 1975. Rapid colorimetric of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6:71-80.
36. Chagvardieff, P., T. d'Aletto, and M. Andre. 1994. Specific effects of irradiance and CO2 concentration doublings on productivity and mineral content in lettuce. Adv. Space Res. 14:269-275.
37. Chen, B., Z. Wang, S. Li, and G. Wang. 2004. Effect of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167:635-643.
38. Chena, B.M., Z.H. Wang, S.X. Li, G.X. Wang, H.X. Songc, and X.N. Wang . 2004. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167:635-643.
39. Choi, J.H., G.C. Chung, and S.R. Suh. 1997. Effect of night humidity on the vegetative growth and the mineral composition of tomato and strawberry plants. Scientia Hort. 70:293-299.
40. Christina N., G.R. Thomas, A.G. Bernard and R.B.N. Harald. 2005. Free radicle generation in Pinus syluvestris and larix deciduas seed primed with polyethylene glycol or potassium salt solutions. Plant Physiol. Biochem. 43:117-123.
41. Chung, J.B., S.G. Park, and S. Park. 2001. Suppression of nitrate accumulation in lettuce by application of Mg and Micronutrients. Korean J. Environ. Agri. 20:340-345.
42. Cumbus, I.P. and P.H. Nye. 1982. Root Zone Temperature Effects on Growth and Nitrate Absorption in Rape (Brassica napus cv. Emerald). J. Expt. Bot. 33:1138-1146.
43. Conesa, E., D. Ninirola, M.J. Vicente, J. Ochoa, S. Banon, and J.A. Fernandez. 2009. The influence of nitrate/ammonium ratio on yield quality and nitrate, oxalate and vitamin C content of baby leaf spinach and bladder campion plants grown in a floating system. Acta Hort. 843:269-273.
44. Coskuner, Y. and E. Karababa. 2007. Physical properties of coriander seeds (Coriandrum sativum L.). J. Food Eng.80:408–416.
45. Das, U.S.R. and P.V. Raju. 1965. Photosynthetic 14CO2 assimilation by rice leaves under the influence of blue light. Indian J. Plant Physiol. 8:1-4.
46. Delhon, P., A. Gojon, P. Tillard, and L. Passama. 1995. Diurnal regulation of NO3- uptake in soybean plants I. Changes in NO3- influx, efflux, and N utilization in the plant during the day/night cycle. J. Exp. Bot. 46:1585-1594.
47. Economakis, C.D. 1990. Effect of solution conductivity on growth and yield of lettuce in nutrient film culture. Acta Hort. 287:309-316.
48. European Community. 2001. European Commission Regulation. No. 466/2001. Official Journal of the European Communities L 77/6.
49. Frank, M.M. and E.J. Bakx. 1997. Growth and flower development in roses as affected by light. Acta Hort. 418:127-134.
50. Gojon, A., R. Wakrim, L. Passama, and P. Robin. 1991. Regulation of NO3- assimilation by anion availability in excised soybean leaves. Plant Pyhisol. 96:398-405.
51. Gonnella, M. and F. Serio. 2003. Yield and quality of lettuce grown in floating system using different sowing density and plant spatial arrangements. Acta Hort. 614:687-692.
52. Gonzalez-Garcia, J.L., M.N. Rodriguez-Mendoza, P. Sanchez-Garcia, B. Osorio-Rosales, L.I. Trejo-Tellez, G. Alcantar-Gonzalez, and M. Sandoval-Villa. 2009. Ammonium/nitrate ratios in hydroponic production of aromatic herbs. Acta Hort. 843:123-128.
53. Grimstad, S.O. and E. Frimanslund. 1993. Effect of different day and night temperature regimes on greenhouse cucumber young plant production, flower bud formation and early yield. Scientia Hort. 53:191-204.
54. Heuvelink, E. 1995. Effect of plant density on biomass allocation to the fruits in tomato (Lycopersicon esculentum Mill.). Scientia Hort. 64:193-201.
55. Holbrook, G.P., J. Hansen, K. Wallick, and T.M. Zinnen. 1993. Starch accumulation during hydroponic growth of spinach and basil plants under carbon dioxide enrichment. Environ. Expt. Bot. 33:313-321.
56. Islam, M., S. Matsui, and S. Ichihashi. 1999. Effects of light quality on seed germination and seedling growth of Cattleya orchids in vitro. J. Japan Soc. Hort. Sci. 68:1132-1138.
57. Jawoski, E. G. 1971. Nitrate reductase assay in intact plant tissues. Biochem. Biopphys. Res. Commun. 43:1274-1279.
58. Kaiser, B.N., K.L. Gridley, J.N. Brady, T. Phillips, and S.D. Tyerman. 2005. The role of molybdenum in agricultural plant production. Ann. Bot. 96:745-754.
59. Kaiser, W.M. and J. Forster. 1989. Low CO2 Prevents Nitrate Reduction in Leaves. Plant Physiol. 91:970-974.
60. Kaiser, W.M. and E. Brendle-Behnisch. 1991. Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis. Plant Physiol. 96:363-367.
61. Keiller, D. and H. Smith. 1989. Control of carbon partitioning by light quality mediated by phytochrome. Plant Sci. 63:25-29.
62. King, B.J., M.Y. Siddiqi, and A.D.M. Glass. 1992. Studies of the uptake of nitrate in barley. V. Estimation of root cytoplasmic nitrate concentration using nitrate reductase activity-implications for nitrate influx. Plant Physiol. 99:1582-1589.
63. Kotsirasa, A., C.M. Olympiosa, J. Drosopoulosb, and H.C. Passama. 2002. Effects of nitrogen form and concentration on the distribution of ions within cucumber fruits. Scientia Hort. 95:175-183.
64. Kulaeva, O.N. 1982. Hormonal regulation of physiological processes in plants on the level of RNA and protein synthesis. Timiryazev Lectures, 41st, Nauka, Moscow. (in Russian).
65. Laine, P., J. Bigot, A. Ourry, and J. Boucaud. 1994. Effects of low temperature on nitrate uptake, and xylem and phloem flows of nitrogen, in Secale cereale L. and Brassica napus L.. New Phytol. 127:675-683.
66. Larios, B., E. Aguera, Purificacion de la Haba, R. Perez-Vicente, J.M. Maldonado. 2001. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity. Planta 212:305-312.
67. Lee, J.G., B.Y. Lee, and H.J. Lee. 2006. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Scientia Hort. 110:119-128.
68. Levine, L.H., P.W. Pare. 2009. Antioxidant capacity reduced in scallions grown under elevated CO2 independent of assayed light intensity. Adv. Space Res. 44: 887-894.
69. Li, J., J.M. Zhou, and Z.Q. Duan. 2007. Effects of elevated CO2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios. J. Environ. Sci. 19:1100-1107.
70. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Expt. Bot. 67:59-64.
71. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids pigments of photosynthetic biomembranes. Methods Enzymol. 148:350-382.
72. Lillo, C. 1994. Light regulation of nitrate reductase in green leaves of higher plants. Physiol. Plant. 90:616-620.
73. Logendra, S., J.D. Putman, and H.W. Janes, 1990. The influence of light period on carbon partitioning, translocation and growth in tomato. Scientia Hort. 42:75-83.
74. Logendra, S. and H.W. Janes, 1992. Light duration effects on carbon partitioning and translocation in tomato. Scientia Hort. 52:19-25.
75. Macduff, J.H. and F.E. Trim. 1986. Effects of root temperature and form of nitrogen nutrition on nitrate reductase activity in oilseed rape (Brassica napus L.). Ann. Bot. 57:345-352.
76. Maynard, D.N., A.V. Barker, P.L. Minotti, and Peck N.H. 1976. Nitrate accumulation in vegetable. Adv. Agron. 28:71-118.
77. Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata. 2008. Effects of Blue-light photon flux density on nitrogen and carbohydrate content and growth of spinach. Acta Hort. 801:1393-1398.
78. Maynard, D.N. and A.V. Barker. 1979. Regulation of nitrate accumulation in vegetables. Acta Hort. 93:153-162.
79. McCree, K.J. 1971. Significance of enhancement for calculations based on action spectrum for photosynthesis. Plant Physiol. 49:704-706.
80. McCall, D. 1992. Effect of supplementary light on tomato transplant growth, and the after-effects on yield. Scientia Hort. 51:65-70.
81. Mckeehen, J.D., D.J. Smart, C.L. Mackowiak, R.M. Wheeler, and S.S. Nielsen. 1996. Effect of CO2 levels on nutrient content of lettuce and radish. Adv. Space Res.18:85-92.
82. Mendlinger, S. 1994. Effect of increasing plant density and salinity on yield and fruit quality in muskmelon. Scientia Hort. 57:41-49.
83. Miller, A.J. and S.J. Smith. 1992. The mechanism of nitrate transport across the tonoplast of barley root cells. Planta. 187:554-557.
84. Miller, A. J. and S. J. Smith. 1996. Nitrate transport and compartmentation in cereal root cells. J. Exp. Bot. 47:843-854.
85. Moe, R. and R.D. Heins. 1990. Control of plant morphogenesis and flowering by light quality and temperature. Acta Hortic. 272:81-90.
86. Morarda, P., J. Silvestrea, L. Lacostea, E. Caumesa, T. Lamazeb. 2004. Nitrate uptake and nitrite release by tomato roots in response to anoxia. J. Plant Physiol. 161:855-865.
87. Mortensen, L.M. 1994. Effects of elevated CO2 concentrations on growth and yield of eight vegetable species in a cool climate. Scientia Hort. 58:177-185.
88. Murage, E. N., N. Watashiro, and M. Masuda. 1997. Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illumination. Scientia Hort. 68:73-82.
89. Nilsen S., K. Hovland, C. Dons, and S.P. Sletten. 1983. Effect of CO2 enrichment on photosynthesis, growth and yield of tomato. Scientia Hort. 20:1-14.
90. Nishimura, T., K. Ohyama, E. Goto, and N. Inagaki. 2009. Concentrations of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Scientia Hort. 122:134-137.
91. Ohashi-Kaneko, K., M. Takase, N. Kon, K. Fujiwara, and Kenji Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 45:189-198.
92. Papadopoulos, A.P. and S. Pararajasingham. 1997. The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersicon esculentum Mill.) : A review. Scientia Hort. 69:l-29.
93. Pettersen, R.I., S. Torre, and H.R. Gislerod. 2010. Effects of leaf aging and light duration on photosynthetic characteristics in a cucumber canopy. Scientia Hort. 125:82-87.
94. Pieter, A.C.M., V.D. Sanden, and B.W. Veen. 1992. Effects of air humidity and nutrient solution concentration on growth, water potential and stomatal conductance of cucumber seedlings. Scientia Hort. 50:173-186.
95. Proietti, S., S. Moscatello, F. Famiani, and A. Battistelli. 2009. Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol. and Biochem. 47:717-723.
96. Ramadan, M.F. and Jorg-Thomas Morsel. 2002. Oil composition of coriander (Coriandrum sativum L.) fruit-seeds. Eur Food Res Technol. 215:204-209.
97. Randall, P.J. 1969. Changes in nitrate and nitrate reductase levels on restoration of molybdenum to molybdenum-deficient plants. Aust. J. agric. Res. 20:635-642.
98. Riens, B. and H.W. Heldt. 1992. Decrease of nitrate reductase activity in spinach leaves during a light-dark transition1. Plant Physiol. 98:573-577.
99. Russo, V. M. 1991. Effects of fertilizer rate, application timing and plant spacing on yield and nutrient content of bell pepper. J. Plant Nutr. 14:1047-1056.
100. Santamaria, P., A. Elia, and F. Serio. 2002. Effect of solution nitrogen concentration on yield, leaf element content, and water and nitrogen use efficiency of three hydroponically-grown rocket salad genotypes. J. Plant Nutr. 25:245-258.
101. Seo, M.W., D.S. Yang, S.J. Kays, J.H. Kim, J.H. Wood, and K.W. Park. 2009. Effects of nutrient solution electrical conductivity and sulfur, magnesium, and phosphorus concentration on sesquiterpene lactones in hydroponically grown lettuce (Lactuca sativa L.). Scientia Hort. 122:369-374.
102. Serio, F., A.E.P. Santamaria, G.R. Rodriguez, G. Conversa, and V.V. Bianco. 2001. Lettuce growth, yield and nitrate content as affected by electrical conductivity of nutrient solution. Acta Hort. 559:563-568.
103. Shinohara, A. and Y. Suzuki. Effect of light and nutritional conditions on the ascorbic acid content of lettuce. J. Japan. Soc. Hort. Sci. 50:239-246.
104. Siomos, A.S. 2000. Nitrate levels in lettuce at three times during a diurnal period. J. Veg. Crop Prod. 6:37-41.
105. Steingrover, E. 1986. Nitrate accumulation in spinach: uptake and reduction of nitrate during a dark or a low light night period. Plant Soil 91:429-432.
106. Taiz, L. and E. Zeiger. 2006. Plant Physiology. The Benjamin/Cummings Publishing Company, Inc.
107. Tenga, A.Z. and D.P. Ormrod. 1985. Responses of okra (Hibiscus esculentus L.) cultivars to photoperiod and temperature. Scientia Hort. 27:177-187.
108. Terada, M. 1987. Differential rapid analysis of ascorbic acid and ascorbic acid-2-sulfate by dinitrophenyl-hydrazine method. Anal. Biochem. 84:604-608.
109. Tucker, D.J. 1977. The effects of far-red light on lateral bud outgrowth in decapitated tomato plants and the associated changes in the levels of auxin and abscisic acid. Plant Sci. Lett. 8:339-344.
110. Wang, Z. and S. Li. 2004. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27:539-556.
111. Wang, H., M. Gu, J. Cui, K. Shi, Y. Zhou, and J. Yu. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobio. B. 96:30-37.
112. WHO. 1996. Toxicological evaluation of certain food additives and contaminants (Prepared by the Joint FAO/WHO Expert Committee on Food Additives, JECFA.).WHO Food Additives Series No. 35. Geneva. World Health Organization.
113. Wilcox, G. E., J. R. Magalhaes1, and F. L. I. M. Silva1. 1985. Ammonium and nitrate concentration as factors in tomato growth and nutrient uptake. J. Plant Nutrition. 8:989-998.
114. Williams, L.E. and A.J. Miller. 2001. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 52:659-688.
115. Wu, M.C., C.Y. Hou, C.M. Jiang, Y.T. Wang, C.Y. Wang, H.H. Chen, and H.M. Chang. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 101:1753-1758.
116. Wu, M. and C. Kubota. 2008. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Scientia Hort. 116:122-129.
117. Zheng, Y., L. Wang, and M. Dixon. 2007. An upper limit for elevated root zone dissolved oxygen concentration for tomato. Scientia Hort. 113:162-165.
118. Zieslin, N. and P. Snir. 1989. Responses of rose plants cultivar ‘Sonia’ and Rosa indica major to changes in pH and aeration of the root environment in hydroponic culture. Scientia Hort. 37:339-349.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46408-
dc.description.abstract萵苣(Lactuca sativa L.)為廣受消費者喜愛之重要蔬菜作物,臺灣栽培以葉萵苣為主,近年來生食用萵苣之需求量增加,唯臺灣夏季高溫多濕不利於萵苣生產。芫荽(Coriandrum sativum L.)為臺灣重要之高單價調味作物,但種植時消耗地力,並有食用清潔問題。臺灣農業受到土地耕作面積狹小、夏秋颱風豪雨、溫室效應、全球暖化等限制,嚴重影響其發展及糧食供給,植物工廠可望緩解部份問題。硝酸鹽含量為蔬菜安全日益受重視之項目,而硝酸鹽累積受肥培管理及環境因子影響甚大。本研究目的為探討植物工廠水耕芫荽及皺葉萵苣之最適栽培參數。光質可提高芫荽滲調種子於海綿塊中之發芽率。芫荽滲調種子在海綿塊內發芽後,於LED燈管2CW6R1B、CW5500K及6CW3R下育苗,其地上部鮮重顯著高於6R3B、8R1B及6CW3B者,冷白光可提高芫荽苗地上部鮮重,藍光抑制其生長;皺葉萵苣幼苗則以於LED燈管8R1B、 6R3B、7R2B、7R1G1B及6CW3R下生長其地上部鮮重較佳,紅光可促進皺葉萵苣苗株生長。根據於三種養液配方及三種栽培密度下水耕之產量與葉片硝酸鹽含量,以臺中區農業改良場家庭葉菜配方於每栽培箱(43×36 cm2)種植20株最適合芫荽;皺葉萵苣則以Hoagland配方於每栽培箱種植5株最合適。芫荽與皺葉萵苣於光強度230 μmol m-2s-1及150 μmol m-2s-1下之生育狀況皆顯著優於70 μmol m-2s-1。皺葉萵苣於三種光週期下生長21天,葉片數、根長、地上部鮮乾重、根部鮮乾重及葉片SPAD讀值以24/0 hr最高。但於高光積值(336 hr=181.44 mole m-2)下,光週期12/12及16/8 hr皆有利於芫荽與皺葉萵苣植株生長。芫荽於採收前3天換清水可降低其葉片硝酸鹽含量至2300-2800 ppm,且不影響產量。皺葉萵苣則以採收前2天換清水並連續光照,葉片硝酸鹽含量降至1400 ppm,且產量未顯著下降。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T05:07:33Z (GMT). No. of bitstreams: 1
ntu-100-R98628131-1.pdf: 841263 bytes, checksum: 187ed3d5d3327e897ca64f6c8fdfa194 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書…………………………………………………..……………………..I
誌謝…………………………………………………………………………………...…II
中文摘要……………………………………………………….………………………III
英文摘要……………………………………………………...……….………...……..IV
第一章 前言…………………………………………….………...…………………….1
第二章 前人研究
一、芫荽及萵苣概述………………………………………………………………….3
二、植物工廠.................................................................................................................5
三、養液特性與植物生長.............................................................................................6
四、植株之氮素代謝及硝酸鹽累積.............................................................................8
五、不同環境因子對植株生長代謝及硝酸鹽累積之影響.......................................12
第三章 材料方法
一、材料及設備……………………………………………………………...………21
二、試驗處理
(一) 光質對芫荽種子發芽之影響.....................................................................22
(二) 光質對芫荽及皺葉萵苣苗期生長及硝酸鹽含量之影響.........................22
(三) 養液對芫荽及皺葉萵苣生育及硝酸鹽含量之影響.................................23
(四) 栽培密度對芫荽及皺葉萵苣生育及硝酸鹽含量之影響.........................23
(五) 光強度對芫荽及皺葉萵苣生育及硝酸鹽含量之影響.............................24
(六) 光週期及光積值對芫荽及皺葉萵苣生育及硝酸鹽含量之影響.............24
(七) 採收前連續光照及清水處理對芫荽及皺葉萵苣產量、硝酸鹽及
維生素C含量之影響..................................................................................25
三、調查與分析...........................................................................................................25
四、統計分析...............................................................................................................27
第四章 結果
一、光質對芫荽種子發芽之影響...............................................................................30
二、光質對芫荽及皺葉萵苣苗期生長及硝酸鹽含量之影響...................................31
三、養液對芫荽及皺葉萵苣生育及硝酸鹽含量之影響...........................................32
四、栽培密度對芫荽及皺葉萵苣生育及硝酸鹽含量之影響...................................34
五、光強度對芫荽及皺葉萵苣生育及硝酸鹽含量之影響.......................................35
六、光週期及光積值對芫荽及皺葉萵苣生育及硝酸鹽含量之影響.......................36
七、採收前連續光照及清水處理對芫荽及皺葉萵苣產量、硝酸鹽及維生素C
含量之影響.........................................................................................................39
第五章 討論
一、光質對芫荽種子發芽之影響...............................................................................70
二、光質對芫荽及皺葉萵苣苗期生長及硝酸鹽含量之影響...................................71
三、養液對芫荽及皺葉萵苣生育及硝酸鹽含量之影響...........................................71
四、栽培密度對芫荽及皺葉萵苣生育及硝酸鹽含量之影響...................................73
五、光強度對芫荽及皺葉萵苣生育及硝酸鹽含量之影響.......................................73
六、光週期及光積值對芫荽及皺葉萵苣生育及硝酸鹽含量之影響.......................74
七、採收前連續光照及清水處理對芫荽及皺葉萵苣產量、硝酸鹽及維生素C
含量之影響.........................................................................................................76
第六章 結論……………………………………………………...……………...…….78
參考文獻……………….………………………………………………………...…….79
dc.language.isozh-TW
dc.title植物工廠生產皺葉萵苣及芫荽之水耕栽培研究zh_TW
dc.titleStudy on Hydroponic Production of Loose Leaf Lettuce (Lactuca sativa L. var. crispa) and Coriander (Coriandrum sativum L.) in Plant Factoryen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee方煒
dc.subject.keyword植物工廠,硝酸鹽,光質,光週期,光強度,養液,密度,zh_TW
dc.subject.keywordplant factory,nitrate,light quality,photoperiod,light intensity,nutrient solution,plant density,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2011-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
821.55 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved