請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46400
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳錫侃(Shyi-Kaan Wu) | |
dc.contributor.author | I-Hung Li | en |
dc.contributor.author | 李怡鴻 | zh_TW |
dc.date.accessioned | 2021-06-15T05:07:10Z | - |
dc.date.available | 2010-07-27 | |
dc.date.copyright | 2010-07-27 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-26 | |
dc.identifier.citation | [1] 黃振賢。機械材料,修訂二版,1990,pp. 234-249。
[2] J.R. Davis, Stainless Steels, ASM International, 1994. [3] J. R. Davis et. Al., Metals Handbook, 10th ed., Vol. 2 Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASM International, 1990. [4] W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed.,McGraw-Hill Inc., 1993. [5] W. H. Kearns, Welding Handbook, Vol. 4, 7th ed., 1976, pp. 76-145. [6] M. Schwartz. Brazing. 2nd ed. , ASM International, 2003. [7] C. Heiple, W. Bennett , T. Rising, Mater. Sci. Eng. A52, 1982, p. 277-289. [8] T.B. Massalasi. Binary Alloy Phase Diagrams. Materials Park: ASM International, 1990 [9] C.G. McKamey, J.H. DeVan, P.F. Tortorelli, V.K. Sikka, J. Mater. Res. 6 ,1991, 1779. [10] S.C. Deevi, V.K. Sikka, C.T. Liu. Progr. Mater. Sci. 42 (1997) 177. [11] W. H. Lee, and R. Y. Lin. Mater. Chem. and Phy., Vol. 58, 1999, pp.231-242. [12] K. Natesan. Mater. Sci. and Eng., A258, 1998, pp. 126-134. [13] C.C. Koch, in: C.C. Koch, C.T. Liu, N.S. Stoloff (Eds.), High Temperature Ordered Intermetallic Alloys, vol. 39, Mater. Res.Symp. Proc., Pittsburg, PA, 1985, p. 397. [14] C.G. McKamey, J.A. Horton, C.T. Liu, J. Mater. Res. 4 (1989) 1156. [15] Y.D. Huang , W.Y. Yang, Z.Q. Sun, Mater. Sci. Eng., A263, 1999, p. 75-84. [16] C.T. Liu, E.H. Lee, C.G. McKamey, Scr. Metall. Mater. 23 (1989) 875. [17] C.T. Liu, C.G. McKamey, E.H. Lee, Scr. Metall. Mater. 24 (1989) 385. [18] R.L. Lynch, L.A. Heldt, W.W. Milligan, Scr. Metall. Mater. 25 (1991) 2147. [19] D. Rafaja, P. Kratochvil, J. Kopecek. Scripta Metall., Vol. 34, 1996,p. 1387-1392. [20] S. M. Kim, D. G. Morris. Acta. Mater., Vol. 46, No.8, 1998, p. 2587-2602 [21] P. J. Maziasz, C. G. McKamey, O. B. Cavin, C. R. Hubbard, T. Zacharia. Mat. Res. Soc. Symp., Vol. 288, 1993, pp. 209-215 [22] C. G. McKamey, J. H. DeVan, P. F. Tortorelli, and V. K. Sikka. J. Mater. Res., Vol. 6, No. 8 ,1991 , pp. 1779-1805. [23] N.S. Stoloff , Mater. Sci. Eng. , A258 , 1998, pp1–14. [24] Y.D. Huang a,, W.Y. Yang, Z.Q. Sun. Intermetallics , 7,2001, p. 119-124 [25] P. Kratochvı´l, P. Ma´lek, M. Cieslar, P. Hanus, J. Hakl,T. Vlasa´k. Intermetallics, 15, 2007,p. 333-337 [26] Sun Yangshan, Yao Zhengjun, Zhang Zhonghua, Hung Haibo. Scripta, Vol.33, NO.5 , 1995, p.811-817 [27] J. R. Knibloe, R. N. Wright, V. K. Sikka, R. H. Baldwin , C. R. Howell. Mater. Sci. and Eng., A153, 1992, p.382-386 [28] Y. Nishino, Y. Makino, Materials Science and Engineering, A319–321,2001, p.368–371 [29] Zheng-Rong Zhang , Wen-Xi Liu. Materials Science and Engineering, A423, 2006, p.343–349 [30] S. W. Banovic, J. N. DuPont, and A. R. Marder. Metall. And Mater. Trans., Vol.31A, 2000, pp. 1805-1817. [31] S. W. Banovic, J. N. DuPont, and A. R. Acta. Mater., Vol. 48, 2000pp. 2815-2822. [32] Haijun Ma, Yajiang Li, Juan Wang. Materials Characterization,57, 2006, p.419–423 [33] P. Kratochvı´, H. Neumann. Intermetallics, 17, 2009, p. 378–380 [34] S. A. David, J. A. Horton, C. G. McKamey, and R. W. Reed. Welding Journal, 1989, pp. 372s-381s. [35] S. A. David, and T. Zacharia. Welding Journal, 1993, pp. 201s-207s. [36] A.A. Fasching, D. I. Ash, G.R. Edwards, S. A. David. Saipta Metail. Vol. 32, No. 3, 1995, pp. 389-394 [37] Juan Wang , Yajiang Li, Yansheng Yin. Journal of Colloid and Interface Science, A285, 2005, p.201–205 [38] Wang Juan, Li Yajiang, Ma Haijun. Vacuum , 80, 2006, p. 426–431 [39] O. Torun, B. Baksan, I. Celikyurekl, R. Gurler. Intermetallics, Vol. 13, 2005, pp. 801-804. [40] O. Torun, I. Celikyureek, and R. Gurler. Mater. Character., vol. 59, 2008, pp. 852-856. [41] Y. L. Lee, R. K. Shiue, S. K. Wu. Intermetallics , Vol. 11, 2003, pp. 187-195. [42] R. K. Shiue, S. K. Wu, Y. L. Lee. Intermetallics , Vol. 13, 2005, pp. 818-826. [43] Y. Li, R.K. Shiue, S.K. Wu, L.M. Wu. Intermetallics , Vol. 18, 2010, pp. 422-428. [44] Michael L. Santella, Amber B. Patterson. Materials Science and Engineering, A258 , 1998, pp. 270-275. [45] M. Brochu, M. Pugh, R.A.L. Drew. Intermetallic, Vol. 12, 2004, pp. 289-294. [46] 李垚。Fe3Al介金屬利用Ag/Cu紅外線硬銲接合之研究及新型低溫銀機硬銲料之開發,國立台灣大學材料科學與工程研究所碩士論文,2009。 [47] G. Humpston, and D. M. Jacobson, Principles of Soldering and Brazing, ASM International, 1993. [48] R. V. Steward, M. L. Grossbeck, B. A. Chin, H. A. Aglan, and Y. Gan. J. of nuclear Mater., vol. 283-287, 2000, pp. 1224-1228. [49] W. S. Bennett, and R. F. Hillyer. Welding Journal, Vol. 53, No. 11, 1974, pp. 510s-516s. [50] R. B. Chen, R. K. Shiue. J. Mater. Sci. Lett., Vol. 20, No. 15, 2001, pp. 1435-1437 [51] P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, 1995. [52] G. Humpston, D.M. Jacobson. Principles of Soldering and Brazing, ASM International, Materials Park, 2001. [53] AWS Brazing Manual, 4th ed., American Welding Society, Miami, Florida, 1990. [54] 張志偉。紅外線快速硬銲接合Ag-Cu-Ti填料/Al2O3基板之動態潤濕行為研究,國立台灣大學機械工程研究所碩士論文,2003。 [55] 陳耀堂。紅外線硬銲接合TiAl/Ti3Al介金屬與Ti-6Al-4V合金之研究,國立台灣大學才學與工程學研究所,2008。 [56] A. Elrefaey, W. Tillmann. Journal of Alloys and Compounds, 2009. [57] C. van der Eijk, Z.K. Sallom, Odd M. Akselsen. Scripta Materialia ,58, 2008, p.779–781 [58] A. M. Hadian, A. L. D. Robin, J. Euro. Cer. Soc. Vol. 19, No. 8, 1999, p.1623 [59] A. Guedesa, A. Pintoa, M. Vieirab, F. Viana. J. Mater. Proc. Tech. Vol. 92-93, No. 8, 1999, p.102 [60] D.R. Milner, R.L. Apps. Introduction to Welding and Brazing, 1968。 [61] J. H. Li, and R. Y. Lin, Metall. Mater. Trans., Vol. 32B, 2001, p. 1177. [62] C. A. Blue, R. Y. Lin. MRS Symp Proceeding, 314, 1993, p. 143 [63] 詹志鴻。利用銀基填料紅外線硬銲接合異質金屬之研究,國立台灣大學機械工程研究所碩士論文,2003。 [64] 黃春憲。利用銀基填料紅外線硬銲接合Ti-6Al-4V與17-4PH S.S.或Al2O3之研究,國立台灣大學材料科學與工程研究所碩士論文,2005。 [65] R.V. Steward, M.L. Grossbeck, B.A. Chin, H.A. Aglan, and Y.Gan. J. of nuclear Mater., vol. 283-287, 2000, pp. 1224-1228 [66] O. Kozlova, R. Voytovych, M. F. Devismes, and N. Eustathopoulos. Mater. Sci.& Eng. A, Vol. 495, No. 1-2, 2008, pp. 96-101. [67] A. Prince, G.V. Raynor, D.S. Evans, Phase Diagrams of Ternary Gold Alloys, The Institute of Metals, London, 1990. [68] V.K. Bhatia, C.S. Kealley, R. Wuhrer, K.S. Wallwork, M.B. Cortie, Journal of Alloys and Compounds, 488, 2009, pp.100-107. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46400 | - |
dc.description.abstract | 本研究以兩種金基填料利用紅外線硬銲接合Fe3Al介金屬,首先利用填料對基材進行潤濕性試驗,以確定適當的加熱溫度再進行後續之接合研究。以 AuPdNi(Au-8wt.%Pd-22wt.%Ni)填料於980℃硬銲,其銲道會產生AlAu2、Fe3Al及Al2FeNi三種較硬脆的介金屬化合物,於此溫度下破壞形式皆屬於脆性破壞。而以AuCu(Au-20wt.%Cu)為填料,在不同的製程條件下進行硬銲,其破壞主要都沿著銲道中Au-Al-Cu三元合金系統中的β相作延伸,但其破壞機制與破壞形式會因不同的製程條件而有所不同,在較低溫的880℃持溫3分鐘會有最高的剪力強度327MPa,且整體呈現延性與脆性混和的破壞形式,而提高持溫時間及溫度則會使基材受到損害,且破壞形式將會轉變成脆性破壞。本研究也利用Cu-33.7%Mn合金填料對304、422與440C不銹鋼進行紅外線硬銲接合,研究結果發現,無論對何種不銹鋼進行硬銲,都會在接合的界面處發現一連續的(γFe,γMn)相,此連續相與銲道的(Cu,γMn)相間的接合性不佳而易有裂痕的產生,考慮熱膨脹係數的差異後,4系列與3系列不鏽鋼於兩相間產生裂痕的情形也有所不同。此外,上述不銹鋼於接合後,銲道中央也可發現硬銲後的凝固縮孔。於875℃持溫3分鐘硬銲304與422不銹鋼時,會沿著銲道中央的縮孔發生延性破壞,其剪力強度大約為280MPa。另外,本研究亦於Cu-33.7%Mn合金填料中添加適量的Ni元素以改善其接合性質,發現其潤濕界面顯微組織與未加Ni之Cu-33.7%Mn填料者相似;實驗中發現,隨著Ni添加得愈多,改善界面處裂痕的效果也愈明顯,當Ni為10wt.%時,在接合界面處已觀察不到任何裂紋的存在。 | zh_TW |
dc.description.abstract | Microstructural evolution and bonding strength of infrared brazed Fe3Al and stainless steels(SS) using Au-based and CuMn-based fillers, respectively, are studied. Firstly the wetting experiments using these braze alloys are conducted to make sure the suitable brazing temperature. Al2FeNi, Fe3Al and AlAu2 intermetallics are found in the joint of AuPdNi (Au-8wt.%Pd-22wt.%Ni) braze alloy brazed at 980℃ and all specimens are fractured in brittle. For AuCu(Au-20wt.%Cu) braze alloy, the brazed joint is fractured along the central β-phase in which the fracture exhibits ductile/brittle mode(s) with different brazing conditions. The highest shear strength for AuCu filler is 327MPa for specimen brazed at 880℃×300s. Raising the brazing time or temperature will deteriorate the strength due to the fracture mode transfers to brittleness. For infrared brazed 304, 422 and 440C stainless steels using Cu-33.7%Mn filler, a continuous interfacial (γFe,γMn) phase is found in between the braze and SS which is not well bonded with (Cu,γMn) primary phase in the brazed joint. Thus some cracks are observed in between (γFe,γMn) and (Cu,γMn) due to the thermal expansion mismatch of these two phases. In addition, solidification shrinkage voids or impurities are also observed in the central region of the joint and the fracture mode along this central voids/impurities is ductile with the shear strength of 280MPa for brazing 304 and 422 SS brazed at 875oC×180s. Cu-33.7%Mn filler alloyed with Ni can improve the joint properties, but increase slightly the fillers’ melting points. The Ni alloyed CuMn fillers can effectively wet all SS at appropriate temperatures and the interfacial cracks in between (γFe,γMn) and (Cu,γMn) phase are greatly reduced with increasing the Ni addition. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:07:10Z (GMT). No. of bitstreams: 1 ntu-99-R97522711-1.pdf: 20727571 bytes, checksum: c0df6d482f5dd11574354d7532fe4ea4 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 v 第一章 前言 1 第二章 文獻回顧 3 2-1 不銹鋼 3 2-1-1 不銹鋼之性質 3 2-1-2 不銹鋼之接合研究 4 2-2 Fe3Al介金屬 6 2-2-1 Fe3Al介金屬之性質 6 2-2-2 Fe3Al介金屬之接合研究 7 2-3 硬銲填料 8 2-3-1 硬銲填料之特性 8 2-3-2 CuMn與CuMnNi合金 9 2-3-3 金基硬銲填料 10 2-4 硬銲接合介紹 11 2-4-1 硬銲接合之特性 11 2-4-2 潤濕特性 12 2-5 紅外線硬銲接合製程 13 第三章 實驗方法 29 3-1 硬銲基材的準備 29 3-1-1 不銹鋼 29 3-1-2 Fe3Al介金屬 29 3-2 硬銲填料之準備 29 3-2-1 CuMn與CuMnNi合金 29 3-2-2 AuPdNi合金與AuCu合金 30 3-2-4 潤濕試驗準備 31 3-3 紅外線硬銲接合製成 31 3-3-1 實驗設備 31 3-3-2 硬銲接合實驗 31 3-3-3 動態潤濕角量測試驗 32 3-3-4 持溫時間之控制 33 3-4 紅外線硬銲接合試片之分析 33 3-4-1 實驗流程 33 3-4-2 剪力試驗 33 3-4- 3 金相觀察之試片準備 33 3-4-4 掃描式電子顯微鏡觀察 34 3-4-5 電子探束微分析儀(EPMA)成分分析 34 第四章 CuMn/CuMnNi合金填料紅外線硬銲接合不銹鋼之研究 43 4-1 前言 43 4-2 CuMn合金紅外線硬銲接合304、422與440C不銹鋼 43 4-2-1 CuMn合金紅外線硬銲304沃斯田鐵系不銹鋼 43 4-2-2 CuMn合金紅外線硬銲422與440C麻田散鐵系不銹鋼 46 4-3 使用CuMn合金紅外線硬銲接合304、422與440C不銹鋼之機械性質分析 48 4-4 CuMnNi合金填料對422與440C不銹鋼之潤濕性分析 50 4-4-1 動態潤濕角分析 51 4-4-2 潤濕界面顯微組織分析 52 4-5 CuMnNi合金紅外線硬銲422麻田散鐵系不銹鋼 54 4-6 結論 55 第五章 金基填料紅外線硬銲接合Fe3Al介金屬之研究 91 5-1 前言 91 5-2 AuPdNi合金填料對Fe3Al介金屬之潤濕性分析 91 5-2-1 動態潤濕角分析 91 5-2-2 潤濕界面顯微組織分析 92 5-3 使用AuPdNi合金填料紅外線硬銲Fe3Al介金屬 95 5-4 AuCu合金填料對Fe3Al介金屬之潤濕性分析 97 5-4-1 動態潤濕角分析 97 5-4-2 潤濕界面顯微組織分析 98 5-5 使用AuCu合金填料紅外線硬銲Fe3Al介金屬 100 5-6 兩種Au基填料紅外線硬銲接合Fe3Al介金屬之機械性質分析 102 5-6-1 使用AuPdNi填料紅外線硬銲接合Fe3Al介金屬之機械性質分析 102 5-6-2 使用AuCu填料紅外線硬銲接合Fe3Al介金屬之機械性質分析 103 5-7 結論 104 第六章 結論 139 參考文獻 141 | |
dc.language.iso | zh-TW | |
dc.title | Fe3Al介金屬利用金基填料紅外線硬銲接合之研究及新型銅基硬銲填料之開發 | zh_TW |
dc.title | Infrared Vacuum Brazing Fe3Al Intermetallics Using Au-based Filler Metals and Studies on the Development of Novel Cu-based Braze Alloys | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 薛人愷(Ren-Kai Shiue),王建義(Jian-yih Wang),薄慧雲(Hui-Yun Po) | |
dc.subject.keyword | 紅外線硬銲接合,Fe3Al介金屬,金基填料,銅錳基填料,顯微組織,接合強度,不銹鋼,潤濕特性, | zh_TW |
dc.subject.keyword | Infrared brazing,Fe3Al intermetallic,Au-based fillers,CuMn-based fillers,bonding strength,stainless steel,wetting behavior, | en |
dc.relation.page | 143 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 20.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。