請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46388完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛明華 | |
| dc.contributor.author | Li-Chieh Su | en |
| dc.contributor.author | 蘇立杰 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:06:35Z | - |
| dc.date.available | 2013-07-27 | |
| dc.date.copyright | 2010-07-27 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-26 | |
| dc.identifier.citation | 1. H. Welker, “On new semiconducting compounds,” Z. Naturforsch., vol. 7a, pp. 744-749, Nov. 1952.
2. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., vol. 9, no. 9, pp. 366-368, Nov. 1962. 3. N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1 xPx) junctions,” Appl. Phys. Lett., vol. 1, no. 4, pp. 82-84, Oct. 1962. 4. H. Kroemer, “A proposed class of heterojunction injection lasers,” Proc. IEEE, vol. 51, no. 12, pp. 1782-1783, Dec. 1963. 5. Z. I. Alferov, and R. F. Kazarinov, “Semiconductor laser with electric pumping,” Inventor’s Certificate 181737 [in Russian], Appli. 950840, priority as of March 30, 1963. 6. R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures,” Phys. Rev. Lett., vol. 33, no. 14, pp. 827-830, Sep. 1974. 7. Y. Arakawa, and H. Sakaki, 'Multidimensional quantum well laser and temperature dependence of its threshold current,' Appl. Phys. Lett., vol. 40, no. 11, pp. 939-941, Jun. 1982. 8. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, John Wiley and Sons, 1999. 9. N. N. Ledentsov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maksimov, I. G. Tabatadze, and P. S. Kopev, “Optical properties of heterostructures with InGaAs-GaAs quantum clusters,” Semiconductors, vol. 28, p. 832, 1994. 10. N. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, S.S. Ruvimov, M.V. Maximov, P.S. Kop’ev, Zh.l. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett., vol. 30, pp. 1416-1417, Aug. 1994. 11. M. Sugawara, Self-Assembled InGaAs/GaAs Quantum Dots, Academic Press. 1999. 12. N. N. Ledentsov, M. Grundmann, F. Heinrichsdorff, D. Bimberg, V. M. Ustinov, A. E. Zhukov, M. V. Maximov, Zh. I. Alferov, and J. A. Lott, “Quantum-dot heterostructure lasers,” IEEE J. Select. Topics Quantum Electron., vol. 6, no.3, pp. 439-451, May/Jun. 2000. 13. Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa, and N. Yokoyama, “Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3 µm,” J. Cryst. Growth, vol. 208, no. 1-4, pp. 93-99, Jan. 2000. 14. L. V. Asryan and R. A. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol., vol. 11, no. 4, pp. 554-567, Apr. 1996. 15. O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Tran. Electron Devices, vol. 50, no. 7 pp. 1575-1581, July 2003. 16. Y. Tang, D. Rich, I. Mukhametzhanov, P. Chen, and A. Hadhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys., vol. 84, no. 6, pp. 3342-3348, Sep. 1998. 17. P. D. Buckle, P. Dawson, S. A. Hall, X. Chen, M. J. Steer, D. J.Mowbray, M. S. Skolnick, and M. Hopkinson, “PL decay time measurements from self-organized InAs/GaAs quantum dots,” J. Appl. Phys., vol. 86, no. 5, pp. 2555-2559, Sep. 1999. 18. X.M. Wen, L.V. Dao, P. Hannaford, S. Mokkapati, H.H. Tan, and C. Jagadish, “The state filling effect in p-doped InGaAs/GaAs quantum dots,” J. Phys.: Condens. Matter, vol. 19, no. 38, p. 386213, Aug. 2007. 19. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Select. Topics Quantum Electron., vol. 9, no.5, pp. 1308-1314, Sep. 2003. 20. E. A. Viktorov, P. Mandel, Y. Tanguy, J. Houlihan, and G. Huyet, “Electron-hole asymmetry and two-state lasing in quantum dot lasers,” Appl. Phys. Lett., vol. 87, no. 5, p. 053113, July 2005. 21. D.-C. Wu, L.-C. Su, Y.-C. Lin, M.-H. Mao, J. S. Wang, G. Lin, and J. Y. Chi, 'Experiments and Simulation of Spectrally-Resolved Static and Dynamic Properties in Quantum Dot Two-State Lasing,' Jpn. J. Appl. Phys., vol. 48, p. 032101, Mar. 2009. 22. A. Markus, J. X. Chen, C. Paranthoen, and A.Fiore, “Simultaneous two-state lasing in quantum-dot lasers”, Appl. Phys. Lett., vol. 82, no. 12, pp. 1818-1820, Mar. 2003 23. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-um self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys., vol. 97, no. 4, p. 043523, Jan. 2005. 24. A. Markus and A.Fiore, “Modeling carrier dynamics in quantum-dot lasers,” Phys. Stat. Sol. (a), vol. 201, no. 2, pp. 338-344, Jan. 2004. 25. K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the Double Laser Emission Occurring in 1.55-um InAs-InP (113)B Quantum-Dot Lasers,” IEEE J. Quantum Electron, vol. 43, no.9, pp. 810-816, Sep. 2007. 26. H.-Y. Wang, H.-C. Cheng, S.-D. Lin, and C.-P. Lee, “Wavelength switching transition in quantum dot lasers,” Appl. Phys. Lett., vol. 90, no. 8, p. 081112, Feb. 2007. 27. M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions experimental and theoretical investigation,” Opt. Exp., vol. 18, no. 12, pp. 12832-12838, Jun. 2010. 28. H. S. Djie and B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, and M. Hopkinson, “Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser,” Opt. Lett., vol. 32, no. 1, pp. 44-46, Jan. 2007. 29. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett., vol. 32, no. 7, pp. 793-795, Apr. 2007. 30. M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers”, Phys. Rev. B, vol. 61, no. 11, pp. 7595-7603, Mar. 2000. 31. O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,” Phys. Rev. B, vol. 59, no. 8, pp. 5688-5701, Feb. 1999. 32. L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits, New York: John Wiley & Sons, 1995. 33. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, “Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B, vol. 54, no. 16, pp. 11532-11538, Oct. 1996. 34. Müller, F. F. Schrey, G. Strasser, and K. Unterrainer, “Ultrafast intraband spectroscopy of electron capture and relaxation in InAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 83, no. 17, pp. 3572-3574, Oct. 2003. 35. Yu. I. Mazur, J. W. Tomm, V. Petrov, G. G. Tarasov, H. Kissel, C. Walther, Z. Ya. Zhuchenko, and W. T. Masselink, “Staircase-like spectral dependence of ground-state luminescence time constants in high-density InAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 78, no. 21 pp. 3214-3216, May 2001. 36. E.W. Bogaart, J.E.M. Haverkort, T. Mano, R. Nötzel, J.H. Wolter, P. Lever, H.H. Tan, C. Jagadish, “Picosecond time-resolved bleaching dynamics of self-assembled quantum dots”, IEEE Trans. Nanotech., vol. 3, no.3 pp. 348-352, Sep. 2004. 37. D. V. O’Connor, D. Phillips, Time-correlated Single Photon Counting, Academic Press, 1984. 38. O. Labeau, P. Tamarat, and B. Lounis, 'Temperature dependence of the luminescence lifetime of single CdSe/ZnS Quantum Dots,” Phys. Rev. Lett., vol. 90, no. 25, p. 257404, Jun. 2003. 39. J. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya, “Observation of phonon bottleneck in quantum dot electronic relaxation,” Phys. Rev. Lett., vol. 86, no. 21, pp. 4930-4933, May 2001. 40. E. W. Bogaart, J. E. M. Haverkort, T. Mano, T. van Lippen, R. Nötzel, and J. H. Wolter, “Role of the continuum background for carrier relaxation in InAs quantum dots,” Phys. Rev. B. vol. 72, no. 19, p. 195301, Nov. 2005. 41. X. M. Wen, L. V. Dao, P. Hannaford, S. Mokkapati, H H Tan, and C. Jagadish, “The state filling effect in p-doped InGaAs/GaAs quantum dots,” J. Phys. Condens., vol. 19, no. 38, p. 386213, Sep. 2007. 42. L.-C. Su, D.-C. Wu, and M.-H. Mao, “Degenerate pump-probe photoluminescence study on quantum dots operating in linear recombination regime,” IEEE Photon. Technol. Lett., vol. 21, no. 5 pp. 289-291, Mar. 2009. 43. E. C. Le Ru, J. Fack, and R. Murray, “Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots,” Phys. Rev. B, vol. 67, no. 24, p. 245318, Jun. 2003. 44. X. Mu, Y. J. Ding, B. S. Ooi, and M. Hopkinson, 'Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs/GaAs quantum wells based on time-resolved pump and probe differential photoluminescence,' Appl. Phys. Lett., vol. 89, no. 18, p. 181924, Nov. 2006. 45. N. F. Masse, I. P. Marko, A. R. Adams, and S. J. Sweeney, “Temperature insensitive quantum dot lasers: are we really there yet?,” J. Mater. Sci., Mater. Electron., vol. 20, pp. 272-276, Mar. 2009. 46. O. B. Shchekin and D. G. Deppe, “Low-threshold high-T0 1.3um InAs quantum dot lasers due to p-type modulation doping of the active region,” IEEE Photon. Technol. Lett., vol. 14, pp. 1231–1233, Sept. 2002. 47. H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3um InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett., vol. 89, no.7, p. 073113, Aug. 2006. 48. D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: The influence of p-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron, vol. 38, pp. 1587-1593, Dec. 2002. 49. M. O. Lipinski, H. Schuler, O. G. Schmidt, K. Eberl, and N. Y. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett., vol. 77, no. 12, pp. 1789-1791, Sept. 2000. 50. T. Kita, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization-Independent Photoluminescence from Columnar InAs/GaAs Self-Assembled Quantum Dots,” Jpn. J. Appl. Phys., part 2 vol. 41, no. 10B, pp. L1143-L1145, Oct. 2002. 51. T. Kita, N. Tamura, O. Wada, M. Sugawara, Y. Nakata, H. Ebe, and Y. Arakawa, “Artificial control of optical gain polarization by stacking quantum dot layers,” Appl. Phys. Lett., vol. 88, no. 21, pp. 211106-211108, May 2006. 52. K.Y. Chuang, C.Y. Chen, T.E. Tzeng, J.Y. Feng, and T.S. Lay, “Optical polarization in vertically coupled InGaAs quantum dots of p-type modulation doping,” Physica E, vol. 40, no. 6, p. 1882-1884, Apr. 2008. 53. P. Howe, B. Abbey, E.C. Le Ru, R. Murray, T.S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films, vol. 464-465, pp. 225-228, Oct. 2004. 54. M.-H. Mao, L.-C. Su, T.E. Tzeng, and T.S. Lay, “Study of p-doping impact on carrier lifetime in vertically coupled/uncoupled quantum dots by a degenerate pump-probe technique”, to be submitted. 55. J. Siegert, S. Marcinkevièius, and Q. X. Zhao, “Carrier dynamic in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B, vol. 72, no. 8, p. 085316, Aug. 2005. 56. X.M. Wen, L.V. Dao, P. Hannaford, S. Mokkapati, H.H. Tan, and C. Jagadish, L.A. Coldren, and S.W. Corzine, “Electron dynamics in modulation p-doped InGaAs/GaAs quantum dots,” Eur. Phys. J. B, vol. 62, pp. 65-70, Mar. 2008. 57. H. S. Lee, J. Y. Lee, T. W. Kim, and M. D. Kim, “Effect of thermal annealing on the microstructural and optical properties of vertically stacked InAs/GaAs quantum dots embedded in modulation-doped heterostructures,” J. Appl. Phys., vol. 94, no. 10, pp. 6354-6357,Nov. 2003. 58. J. D. Lambkin, D. J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emeny, “Thermal quenching of the photoluminescence of InGaAs/GaAs and InGaAs/AlGaAs strained-layer quantum wells,” Appl. Phys. Lett., vol. 57, no. 19, pp. 1986-1988, Nov. 1990. 59. G. Rainò, A. Salhi, V. Tasco, M. De Vittorio, A. Passaseo, R. Cingolani, M. De Giorgi, E. Luna, and A. Trampert, “Structural and optical properties of vertically stacked triple InAs dot-in-well structure,” J. Appl. Phys., vol. 103, no. 9, p. 096107, May 2008. 60. W.-Y. Chen, W.-H. Chang, A,-T. Chou, T.-M. Hsu, P.-S. Chen, Z. Pei, and L.-S. Lai, “Optical properties of stacked Ge/Si quantum dots with different spacer thickness grown by chemical vapor deposition”, Appl. Surf. Sci., vol. 224, pp. 148-151, Mar. 2004. 61. R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, and D. Bimberg, “Temperature Dependent Optical Properties of Self-Organized InAs/GaAs Quantum Dots,” J. Electron. Mat., vol. 28, no. 5, pp. 520-527, May 1999. 62. J. Urayama, T. B. Norris, H. Jiang, J. Singh, and P. Bhattacharya, “Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots,” Appl. Phys. Lett., vol. 80, no. 12, pp. 2162-2164, Jan. 2002 63. J. Hours, P. Senellart, E. Peter, A. Cavanna, and J. Bloch, “Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot,” Phys. Rev. B, vol. 71, no. 16 , p. 161306R, Apr. 2005. 64. V. Talalaev, J. Tomm, N. Zakharov, P. Werner, B. Novikov, and A. Tonkikh, “Transient spectroscopy of InAs quantum dot molecules,” Appl. Phys. Lett., vol. 85, no. 2, pp. 284-286, May2004. 65. W. Sheng and J. P. Leburton, “Spontaneous localization in InAs/GaAs self-assembled quantum-dot molecules,” Appl. Phys. Lett., vol. 81, no. 23, pp. 4449-4451, Dec. 2002. 66. H. Benisty, C.M. Sotomayor-Torres, and C. Weisbuch, 'Intrinsic mechanism for the poor luminescence properties of quantum-box systems', Phys. Rev. B, vol. 44, no. 19, pp. 10945-10948, Nov. 1991. 67. T. Inoshita and H. Sakaki, “Electron relaxation in a quantum dot: Significance of multiphonon processes,” Phys. Rev. B, vol. 46, no. 11, pp. 7260-7263, Sep. 1992. 68. R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B, vol. 56, no. 16, pp. 10435-10445, Oct. 1997. 69. S. Sanguinetti, K. Watanabe, T. Tateno, M. Wakaki, N. Koguchi, and M. Gurioli, “Role of the wetting layer in the carrier relaxation in quantum dots,” Appl. Phys. Lett., vol. 81, no. 4, pp. 613-615, July 2002. 70. K. Gundoglu, K. C. Hall, T. F. Boggess, D. G. Deppe, and O. B. Shchekin, “Ultrafast electron capture into p-modulation-doped quantum dots,” Appl. Phys. Lett., vol. 85, no. 20, pp. 4570-4572, Nov. 2004. 71. H. Marh and Mitchell D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Comm., vol. 13, no. 2, pp. 96-99, Feb. 1975. 72. J. Shah, “Ultrafast luminescence spectroscopy using sum frequency generation,” IEEE J. Quantum Electron., vol. 24, no. 2, pp. 276-288, Feb. 1988. 73. F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transitions and carrier relaxation in self assembled InAs/GaAs quantum dots”, J. Appl. Phys., vol. 80, no. 7, pp. 4019-4026, Oct. 1996. 74. K. Neudert, F. Trojánek, K. Kuldová, J. Oswald, A. Hospodková, and P. Malý1, “Ultrafast photoluminescence spectroscopy of InAs/GaAs quantum dots,” Phys. Stat. Sol. (C), vol. 6, no. 4, pp. 853-856, Dec 2009. 75. E. W. Bogaart, J. E. M. Haverkort, T. Mano, R. Nötzel, and J. H. Wolter, “Carrier capture and relaxation through a continuum background in InAs quantum dots,” Physica E, vol. 32, no. 1-2, pp. 163-166, May 2006. 76. S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and JL Merz, ” State filling and time-resolved photoluminescence of excited states in InxGa1-xAs/GaAs self-assembled quantum dots,” Phys. Rev. B, vol. 54, no. 16, pp. 11548-11554, Oct. 1996. 77. X. M. Wen, L. V. Dao1, J. A. Davis, P. Hannaford1, S. Mokkapati, H. H. Tan, and C. Jagadish, “Carrier dynamics in p-type InGaAs/GaAs quantum dots,” J. Mater. Sci. Mater. Electron., vol. 18, Suppl. 1, pp. 363-365, Oct. 2007. 78. S. Sanguinetti, M. Gurioli, T. Kuroda, K. Watanabe, T. Tateno, F. Minami,M. Wakaki, and N. Koguchi, “Carrier relaxation in quantum dots without wetting layer,” Physica E, vol. 17, pp. 91-92, Apr. 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46388 | - |
| dc.description.abstract | 在本論文中,利用理論模擬以及實驗分析來研究半導體量子點內的載子動力學。量子點結構可以對載子造成三維的侷限,而這樣的侷限可以產生獨特的能態密度和不連續的能階,同時增進了一些物理上的特性。因此,利用量子點作為主動層的半導體元件,將具有許多不錯的特性,非常適合用於高速的光通訊系統。
首先,我們針對量子點雷射的雙能態激發放光現象來進行理論計算以及實驗驗證。在電訊號動態量測中,我們發現激發態量子點比基態量子點還要早達到激發放光。這個現象是由於量子點內的能態數目是有限的,造成當量子點雷射的光學損耗接近基態飽和增益時,載子較難找到未填滿的量子點進入,使得量子點的捕捉時間以及鬆弛時間將會變長,而讓激發態的載子能夠累積先達到激發放光。我們成功解釋雙能態激發放光量子點雷射獨特的動態特性。 對於量子點元件特性來說,載子的生命週期是一項很重要的參數。因此我們建立一套新的時間解析系統-簡併激發偵測光激發螢光系統來量測量子點的載子生命週期。首先,我們證明了這個系統是可以使用在發光波長長於1.1微米的近紅外範圍。在這個波長範圍內,很難找到同時具有高速以及高敏感度的光子計數元件。我們並利用這個時間解析系統,研究p型摻雜對於具有垂直耦合與未耦合量子點生命週期的影響。藉由改變溫度量測載子生命週期的實驗,我們可以清楚的證明:(i)在p型摻雜量子點樣品裡,因為這些摻雜造成載子生命週期由非輻射放光機制主導,(ii)在垂直耦合量子點樣品裡,因為較小的振子強度而使得載子生命週期變長。 最後,我們建立一套時間解析上轉換系統來研究量子點的捕捉時間,這個量測系統的時間解析度為280飛秒。我們觀察到在垂直耦合量子點內不管是否具有p型摻雜,都有較快的捕捉時間(6.5 - 6.7皮秒),可能是因為較薄的分隔層產生較大的載子濃度而提高了藉由歐傑過程釋放能量的機率,使得載子更容易掉入量子點內。另外,我們也觀察到在單純只有p型摻雜量子點的捕捉時間(8.0皮秒)與未摻雜量子點的捕捉時間(8.0皮秒)相近,造成這個現象的原因可能還需要進一步探究。 | zh_TW |
| dc.description.abstract | This dissertation studies the carrier dynamics in semiconductor quantum dots by means of numerical simulations and various experimental techniques. Quantum dots exhibit a structure of three dimensional confinements for carriers. This kind of confinement results in the unique density of states and some improved optical properties. Hence, semiconductor devices based on quantum dots have many superior performances and are suitable for using in optical communication.
In the first part of this dissertation, we study the two-state lasing phenomenon in quantum-dot lasers experimentally as well as theoretically. The onset of excited-state lasing prior to ground-state lasing was observed in dynamics measurements under electrical excitation. The explanation for this phenomenon is due to the finite states in quantum-dot lasers. When the optical loss level is close to ground-state saturation gain, the carrier capture time into ground states becomes longer and results in the establishment of excited-state population. We successfully explain the origin of the unique dynamics phenomenon in two-state lasing quantum-dot lasers. In semiconductors, carrier lifetime is an important parameter determining the device performances. We build up a novel time-resolved system by using a degenerate pump-probe photoluminescence technique, to measure carrier lifetimes of different quantum-dot samples. We demonstrate that this technique can be used in the infrared region with wavelength longer than 1.1 um. In this wavelength region, it is difficult to find high-speed and high sensitivity photon counting devices. We also study the p-doping impact on carrier lifetime in vertically coupled and uncoupled quantum dots by unsing this degenerate pump-probe photoluminescence technique. From the temperature dependent carrier lifetime measurement, we can clearly demonstrate (i) the dominant nonradiative mechanism induced by the extra p-type dopants and (ii) the smaller oscillator strength in the vertically coupled quantum dots. Finally, we study carrier capture times of vertically coupled and p-doped quantum dots by using a home-made time-resolved up-conversion system. The time resolution of this measurement is 280 fs. Faster capture times in the vertically coupled quantum-dot samples (6.5 ps to 6.7 ps) are observed. It may be a consequence of the enhanced Auger-assisted relaxation mechanism due to high carrier density caused by the thinner spacer layers. However, no capture time difference (8.0 ps) has been observed between the p-doped and undoped quantum-dot samples. Further studies are still needed to reveal the reason for this phenomenon. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:06:35Z (GMT). No. of bitstreams: 1 ntu-99-F92941030-1.pdf: 2741883 bytes, checksum: d2f9ffd0f795ac501f31079a0cd5e6b6 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Table of Contents v List of Figures vi List of Tables x 1 Introduction 1 1.1 Overview 1 1.2 Basics of Quantum Dots 5 1.3 Organization of This Dissertation 6 2 Two-State Lasing in Quantum-Dot Lasers 9 2.1 Two-State Lasing 10 2.2 Simulation Model: Rate Equations 12 2.3 Simulation Results 18 2.4 Experimental Results 29 2.5 Conclusion 35 3 Degenerate Pump-Probe Photoluminescence 37 3.1 Theory of Lifetime Determination 39 3.2 Experimental Setup 42 3.3 Experimental Results 42 3.3 Conclusion 50 4 P-doping Impact on Carrier Lifetime in Vertically Coupled/Uncoupled Quantum Dots 53 4.1 Sample Structure 56 4.2 Temperature Dependent Photoluminescence Spectra 57 4.3 Temperature Dependent Carrier Lifetime 62 4.4 Conclusion 65 5 Carrier Capture Dynamics in P-doping and Vertically Coupled Quantum Dots 67 5.1 Up-conversion System 68 5.2 Experimental Results 71 5.3 Conclusion 78 References 79 | |
| dc.language.iso | en | |
| dc.subject | 載子動態 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | quantum dot | en |
| dc.subject | carrier dynamics | en |
| dc.title | 半導體自聚性量子點之載子動力學 | zh_TW |
| dc.title | Study of Carrier Dynamics in Semiconductor Self-Assembled Quantum Dots | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 綦振瀛,林浩雄,賴聰賢,彭隆瀚,王智祥 | |
| dc.subject.keyword | 量子點,載子動態, | zh_TW |
| dc.subject.keyword | quantum dot,carrier dynamics, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
