請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46368
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃青真 | |
dc.contributor.author | Ting-Ni Huang | en |
dc.contributor.author | 黃婷妮 | zh_TW |
dc.date.accessioned | 2021-06-15T05:05:40Z | - |
dc.date.available | 2015-07-28 | |
dc.date.copyright | 2010-07-28 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-26 | |
dc.identifier.citation | Ahmed, I., Adeghate, E., Cummings, E., Sharma, A.K., and Singh, J. (2004). Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol Cell Biochem 261, 63-70.
Alberti, K.G., Zimmet, P., and Shaw, J. (2006). Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23, 469-480. Anini, Y., and Brubaker, P.L. (2003a). Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology 144, 3244-3250. Anini, Y., and Brubaker, P.L. (2003b). Role of leptin in the regulation of glucagon-like peptide-1 secretion. Diabetes 52, 252-259. Anini, Y., Hansotia, T., and Brubaker, P.L. (2002). Muscarinic receptors control postprandial release of glucagon-like peptide-1: in vivo and in vitro studies in rats. Endocrinology 143, 2420-2426. Ayala, J.E., Bracy, D.P., Hansotia, T., Flock, G., Seino, Y., Wasserman, D.H., and Drucker, D.J. (2008). Insulin action in the double incretin receptor knockout mouse. Diabetes 57, 288-297. Baggio, L., Kieffer, T.J., and Drucker, D.J. (2000). Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, regulates fasting glycemia and nonenteral glucose clearance in mice. Endocrinology 141, 3703-3709. Bergenstal, R.M., Bailey, C.J., and Kendall, D.M. Type 2 diabetes: assessing the relative risks and benefits of glucose-lowering medications. Am J Med 123, 374 e 379 -318. Bouchard, L., Faucher, G., Tchernof, A., Deshaies, Y., Lebel, S., Hould, F.S., Marceau, P., and Vohl, M.C. (2009). Comprehensive genetic analysis of the dipeptidyl peptidase-4 gene and cardiovascular disease risk factors in obese individuals. Acta Diabetol 46, 13-21. Brubaker, P.L., Schloos, J., and Drucker, D.J. (1998). Regulation of glucagon-like peptide-1 synthesis and secretion in the GLUTag enteroendocrine cell line. Endocrinology 139, 4108-4114. Burkey, B.F., Li, X., Bolognese, L., Balkan, B., Mone, M., Russell, M., Hughes, T.E., and Cani, P.D., Daubioul, C.A., Reusens, B., Remacle, C., Catillon, G., and Delzenne, N.M. (2005a). Involvement of endogenous glucagon-like peptide-1(7-36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J Endocrinol 185, 457-465. Cani, P.D., Dewever, C., and Delzenne, N.M. (2004). Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 92, 521-526. Cani, P.D., Holst, J.J., Drucker, D.J., Delzenne, N.M., Thorens, B., Burcelin, R., and Knauf, C. (2007). GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Mol Cell Endocrinol 276, 18-23. Cani, P.D., Knauf, C., Iglesias, M.A., Drucker, D.J., Delzenne, N.M., and Burcelin, R. (2006). Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55, 1484-1490. Cani, P.D., Neyrinck, A.M., Maton, N., and Delzenne, N.M. (2005b). Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes Res 13, 1000-1007. Chen, D., Liao, J., Li, N., Zhou, C., Liu, Q., Wang, G., Zhang, R., Zhang, S., Lin, L., Chen, K., et al. (2007). A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice. Proc Natl Acad Sci U S A 104, 943-948. Chen, M.C., Wu, S.V., Reeve, J.R., Jr., and Rozengurt, E. (2006). Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am J Physiol Cell Physiol 291, C726-739. Cheng, H.L., Huang, H.K., Chang, C.I., Tsai, C.P., and Chou, C.H. (2008). A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. J Agric Food Chem 56, 6835-6843. Chu, Z.L., Carroll, C., Alfonso, J., Gutierrez, V., He, H., Lucman, A., Pedraza, M., Mondala, H., Gao, H., Bagnol, D., et al. (2008). A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release. Endocrinology 149, 2038-2047. Cordier-Bussat, M., Bernard, C., Levenez, F., Klages, N., Laser-Ritz, B., Philippe, J., Chayvialle, J.A., and Cuber, J.C. (1998). Peptones stimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene. Diabetes 47, 1038-1045. Cummings, E., Hundal, H.S., Wackerhage, H., Hope, M., Belle, M., Adeghate, E., and Singh, J. (2004). Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes. Mol Cell Biochem 261, 99-104. Delzenne, N.M., Cani, P.D., and Neyrinck, A.M. (2007). Modulation of glucagon-like peptide 1 and energy metabolism by inulin and oligofructose: experimental data. J Nutr 137, 2547S-2551S. Donya, A., Hettiarachchy, N., Liyanage, R., Lay, J., Jr., Chen, P., and Jalaluddin, M. (2007). Effects of processing methods on the proximate composition and momordicosides K and L content of bitter melon vegetable. J Agric Food Chem 55, 5827-5833. Dotson, C.D., Zhang, L., Xu, H., Shin, Y.K., Vigues, S., Ott, S.H., Elson, A.E., Choi, H.J., Shaw, H., Egan, J.M., et al. (2008). Bitter taste receptors influence glucose homeostasis. PLoS One 3, e3974. Drucker, D.J. (2007). The role of gut hormones in glucose homeostasis. J Clin Invest 117, 24-32. Drucker, D.J., and Nauck, M.A. (2006). The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696-1705. Dyer, J., Salmon, K.S., Zibrik, L., and Shirazi-Beechey, S.P. (2005). Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33, 302-305. Edfalk, S., Steneberg, P., and Edlund, H. (2008). Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57, 2280-2287. Eiki, J., Saeki, K., Nagano, N., Iino, T., Yonemoto, M., Takayenoki-Iino, Y., Ito, S., Nishimura, T., Sato, Y., Bamba, M., et al. (2009). A selective small molecule glucagon-like peptide-1 secretagogue acting via depolarization-coupled Ca(2+) influx. J Endocrinol 201, 361-367. Eng, J., Kleinman, W.A., Singh, L., Singh, G., and Raufman, J.P. (1992). Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 267, 7402-7405. Fernandes, N.P., Lagishetty, C.V., Panda, V.S., and Naik, S.R. (2007). An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract. BMC Complement Altern Med 7, 29. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497-509. Fonseca, V.A. (2007). Identification and treatment of prediabetes to prevent progression to type 2 diabetes. Clin Cornerstone 8, 10-18; discussion 19-20. Freeman, H.C., Hugill, A., Dear, N.T., Ashcroft, F.M., and Cox, R.D. (2006). Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55, 2153-2156. Gao, H., Wang, X., Zhang, Z., Yang, Y., Yang, J., Li, X., and Ning, G. (2007). GLP-1 amplifies insulin signaling by up-regulation of IRbeta, IRS-1 and Glut4 in 3T3-L1 adipocytes. Endocrine 32, 90-95. Gault, V.A., Irwin, N., Green, B.D., McCluskey, J.T., Greer, B., Bailey, C.J., Harriott, P., O'Harte F, P., and Flatt, P.R. (2005). Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes 54, 2436-2446. Gault, V.A., O'Harte, F.P., Harriott, P., Mooney, M.H., Green, B.D., and Flatt, P.R. (2003). Effects of the novel (Pro3)GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin. Diabetologia 46, 222-230. Gee, J.M., and Johnson, I.T. (2005). Dietary lactitol fermentation increases circulating peptide YY and glucagon-like peptide-1 in rats and humans. Nutrition 21, 1036-1043. Green, B.D., Irwin, N., Gault, V.A., Bailey, C.J., O'Harte, F.P., and Flatt, P.R. (2005). Chronic treatment with exendin(9-39)amide indicates a minor role for endogenous glucagon-like peptide-1 in metabolic abnormalities of obesity-related diabetes in ob/ob mice. J Endocrinol 185, 307-317. Hirasawa, A., Tsumaya, K., Awaji, T., Katsuma, S., Adachi, T., Yamada, M., Sugimoto, Y., Miyazaki, S., and Tsujimoto, G. (2005). Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11, 90-94. Holst, J.J. (2007). The physiology of glucagon-like peptide 1. Physiol Rev 87, 1409-1439. Holst, J.J., and Gromada, J. (2004). Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 287, E199-206. Hu, G.X., Chen, G.R., Xu, H., Ge, R.S., and Lin, J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses 74, 123-126. Iakoubov, R., Izzo, A., Yeung, A., Whiteside, C.I., and Brubaker, P.L. (2007). Protein kinase Czeta is required for oleic acid-induced secretion of glucagon-like peptide-1 by intestinal endocrine L cells. Endocrinology 148, 1089-1098. Jang, H.J., Kokrashvili, Z., Theodorakis, M.J., Carlson, O.D., Kim, B.J., Zhou, J., Kim, H.H., Xu, X., Chan, S.L., Juhaszova, M., et al. (2007). Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 104, 15069-15074. Katsuma, S., Hirasawa, A., and Tsujimoto, G. (2005). Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 329, 386-390. Khanna, P., Jain, S.C., Panagariya, A., and Dixit, V.P. (1981). Hypoglycemic activity of polypeptide-p from a plant source. J Nat Prod 44, 648-655. Kim, W., and Egan, J.M. (2008). The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 60, 470-512. Kirino, Y., Sato, Y., Kamimoto, T., Kawazoe, K., Minakuchi, K., and Nakahori, Y. (2009). Interrelationship of dipeptidyl peptidase IV (DPP4) with the development of diabetes, dyslipidaemia and nephropathy: a streptozotocin-induced model using wild-type and DPP4-deficient rats. J Endocrinol 200, 53-61. Knauf, C., Cani, P.D., Perrin, C., Iglesias, M.A., Maury, J.F., Bernard, E., Benhamed, F., Gremeaux, T., Drucker, D.J., Kahn, C.R., et al. (2005). Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 115, 3554-3563. Krawinkel, M.B., and Keding, G.B. (2006). Bitter gourd (Momordica Charantia): A dietary approach to hyperglycemia. Nutr Rev 64, 331-337. Lauffer, L.M., Iakoubov, R., and Brubaker, P.L. (2009). GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 58, 1058-1066. Lee, B., Shi, L., Kassel, D.B., Asakawa, T., Takeuchi, K., and Christopher, R.J. (2008). Pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel inhibitor of dipeptidyl peptidase-4, in rats, dogs, and monkeys. Eur J Pharmacol 589, 306-314. Lejeune, M.P., Westerterp, K.R., Adam, T.C., Luscombe-Marsh, N.D., and Westerterp-Plantenga, M.S. (2006). Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am J Clin Nutr 83, 89-94. Lim, G.E., Huang, G.J., Flora, N., LeRoith, D., Rhodes, C.J., and Brubaker, P.L. (2009). Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology 150, 580-591. Mahomoodally, M.F., Fakim, A.G., and Subratty, A.H. (2004). Momordica charantia extracts inhibit uptake of monosaccharide and amino acid across rat everted gut sacs in-vitro. Biol Pharm Bull 27, 216-218. Mannucci, E., Pala, L., Ciani, S., Bardini, G., Pezzatini, A., Sposato, I., Cremasco, F., Ognibene, A., and Rotella, C.M. (2005). Hyperglycaemia increases dipeptidyl peptidase IV activity in diabetes mellitus. Diabetologia 48, 1168-1172. Matsuyama-Yokono, A., Tahara, A., Nakano, R., Someya, Y., Nagase, I., Hayakawa, M., and Shibasaki, M. (2008). ASP8497 is a novel selective and competitive dipeptidyl peptidase-IV inhibitor with antihyperglycemic activity. Biochem Pharmacol 76, 98-107. McKillop, A.M., Duffy, N.A., Lindsay, J.R., O'Harte, F.P., Bell, P.M., and Flatt, P.R. (2008). Decreased dipeptidyl peptidase-IV activity and glucagon-like peptide-1(7-36)amide degradation in type 2 diabetic subjects. Diabetes Res Clin Pract 79, 79-85. Miller, S., and St Onge, E.L. (2006). Sitagliptin: a dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Ann Pharmacother 40, 1336-1343. Miyawaki, K., Yamada, Y., Ban, N., Ihara, Y., Tsukiyama, K., Zhou, H., Fujimoto, S., Oku, A., Okabe, H., Miyahara, Y., and Yamauchi, T. (1982). Studies on the constituents of Momordica charantia L. IV characterization of the new curcubitacin glycosides of the immature fruits structures of the bitter glycosides momordicoside K and L. Chem Pharm Bull 30, 4334-4340. Overton, H.A., Babbs, A.J., Doel, S.M., Fyfe, M.C., Gardner, L.S., Griffin, G., Jackson, H.C., Procter, M.J., Rasamison, C.M., Tang-Christensen, M., et al. (2006). Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3, 167-175. Pala, L., Mannucci, E., Pezzatini, A., Ciani, S., Sardi, J., Raimondi, L., Ognibene, A., Cappadona, A., Vannelli, B.G., and Rotella, C.M. (2003). Dipeptidyl peptidase-IV expression and activity in human glomerular endothelial cells. Biochem Biophys Res Commun 310, 28-31. Parker, J.C., Irwin, N., Lavery, K.S., Green, B.D., O'Harte, F.P., Gault, V.A., and Flatt, P.R. (2007). Metabolic effects of sub-chronic ablation of the incretin receptors by daily administration of (Pro3)GIP and exendin(9-39)amide in obese diabetic (ob/ob) mice. Biol Chem 388, 221-226. Pocai, A., Carrington, P.E., Adams, J.R., Wright, M., Eiermann, G., Zhu, L., Du, X., Petrov, A., Lassman, M.E., Jiang, G., et al. (2009). Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58, 2258-2266. Rathi, S.S., Grover, J.K., and Vats, V. (2002). The effect of Momordica charantia and Mucuna pruriens in experimental diabetes and their effect on key metabolic enzymes involved in carbohydrate metabolism. Phytother Res 16, 236-243. Reeves, P.G., Nielsen, F.H., and Fahey, G.C., Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123, 1939-1951. Reimann, F., and Gribble, F.M. (2002). Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51, 2757-2763. Reimann, F., Williams, L., da Silva Xavier, G., Rutter, G.A., and Gribble, F.M. (2004). Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 47, 1592-1601. Reimer, R.A. (2006). Meat hydrolysate and essential amino acid-induced glucagon-like peptide-1 secretion, in the human NCI-H716 enteroendocrine cell line, is regulated by extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinases. J Endocrinol 191, 159-170. Reimer, R.A., Darimont, C., Gremlich, S., Nicolas-Metral, V., Ruegg, U.T., and Mace, K. (2001). A human cellular model for studying the regulation of glucagon-like peptide-1 secretion. Endocrinology 142, 4522-4528. Reimer, R.A., and Russell, J.C. (2008). Glucose tolerance, lipids, and GLP-1 secretion in JCR:LA-cp rats fed a high protein fiber diet. Obesity (Silver Spring) 16, 40-46. Rocca, A.S., and Brubaker, P.L. (1995). Stereospecific effects of fatty acids on proglucagon-derived peptide secretion in fetal rat intestinal cultures. Endocrinology 136, 5593-5599. Rocca, A.S., LaGreca, J., Kalitsky, J., and Brubaker, P.L. (2001). Monounsaturated fatty acid diets improve glycemic tolerance through increased secretion of glucagon-like peptide-1. Endocrinology 142, 1148-1155. Roffey, B.W., Atwal, A.S., Johns, T., and Kubow, S. (2007). Water extracts from Momordica charantia increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells. J Ethnopharmacol 112, 77-84. Rozengurt, E., and Sternini, C. (2007). Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol 7, 557-562. Saitoh, O., Hirano, A., and Nishimura, Y. (2007). Intestinal STC-1 cells respond to five basic taste stimuli. Neuroreport 18, 1991-1995. Samson, S.L., Gonzalez, E.V., Yechoor, V., Bajaj, M., Oka, K., and Chan, L. (2008). Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-induced obesity mouse model. Mol Ther 16, 1805-1812. Sarkar, S., Pranava, M., and Marita, R. (1996). Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes. Pharmacol Res 33, 1-4. Shibib, B.A., Khan, L.A., and Rahman, R. (1993). Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem J 292 ( Pt 1), 267-270. Shih, C.C., Lin, C.H., and Lin, W.L. (2008). Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract 81, 134-143. Sitasawad, S.L., Shewade, Y., and Bhonde, R. (2000). Role of bittergourd fruit juice in stz-induced diabetic state in vivo and in vitro. J Ethnopharmacol 73, 71-79. Sridhar, M.G., Vinayagamoorthi, R., Arul Suyambunathan, V., Bobby, Z., and Selvaraj, N. (2008). Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats. Br J Nutr 99, 806-812. Su, H., He, M., Li, H., Liu, Q., Wang, J., Wang, Y., Gao, W., Zhou, L., Liao, J., Young, A.A., et al. (2008). Boc5, a non-peptidic glucagon-like Peptide-1 receptor agonist, invokes sustained glycemic control and weight loss in diabetic mice. PLoS One 3, e2892. Sudre, B., Broqua, P., White, R.B., Ashworth, D., Evans, D.M., Haigh, R., Junien, J.L., and Aubert, M.L. (2002). Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 51, 1461-1469. Tan, M.J., Ye, J.M., Turner, N., Hohnen-Behrens, C., Ke, C.Q., Tang, C.P., Chen, T., Weiss, H.C., Gesing, E.R., Rowland, A., et al. (2008). Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 15, 263-273. Tanaka-Amino, K., Matsumoto, K., Hatakeyama, Y., Shima, I., Takakura, S., and Muto, S. (2008). ASP4,000, a novel, selective, dipeptidyl peptidase 4 inhibitor with antihyperglycemic activity. Eur J Pharmacol 590, 444-449. Toft-Nielsen, M.B., Damholt, M.B., Madsbad, S., Hilsted, L.M., Hughes, T.E., Michelsen, B.K., and Holst, J.J. (2001). Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 86, 3717-3723. Tolhurst, G., Reimann, F., and Gribble, F.M. (2009). Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol 587, 27-32. Toye, A.A., Lippiat, J.D., Proks, P., Shimomura, K., Bentley, L., Hugill, A., Mijat, V., Goldsworthy, M., Moir, L., Haynes, A., et al. (2005). A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 48, 675-686. Tseng, C.C., Zhang, X.Y., and Wolfe, M.M. (1999). Effect of GIP and GLP-1 antagonists on insulin release in the rat. Am J Physiol 276, E1049-1054. Tsuda, K., Toyokuni, S., et al. (2002). Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8, 738-742. Unger, R.H., and Orci, L. (1982). The role of glucagon in diabetes. Compr Ther 8, 53-59. Vilsboll, T., Krarup, T., Deacon, C.F., Madsbad, S., and Holst, J.J. (2001). Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50, 609-613. Vollmer, K., Holst, J.J., Baller, B., Ellrichmann, M., Nauck, M.A., Schmidt, W.E., and Meier, J.J. (2008). Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 57, 678-687. Wang, P.R. (2005). Acute and chronic effects of the incretin enhancer vildagliptin in insulin-resistant rats. J Pharmacol Exp Ther 315, 688-695. Wang, Y., Kole, H.K., Montrose-Rafizadeh, C., Perfetti, R., Bernier, M., and Egan, J.M. (1997). Regulation of glucose transporters and hexose uptake in 3T3-L1 adipocytes: glucagon-like peptide-1 and insulin interactions. J Mol Endocrinol 19, 241-248. Williams, D.L. (2009). Minireview: finding the sweet spot: peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis. Endocrinology 150, 2997-3001. Xu, G., Kaneto, H., Laybutt, D.R., Duvivier-Kali, V.F., Trivedi, N., Suzuma, K., King, G.L., Weir, G.C., and Bonner-Weir, S. (2007). Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 56, 1551-1558. Yazbeck, R., Howarth, G.S., and Abbott, C.A. (2009). Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol Sci 30, 600-607. Yi, F., Sun, J., Lim, G.E., Fantus, I.G., Brubaker, P.L., and Jin, T. (2008). Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology 149, 2341-2351. Yibchok-Anun, S., Adisakwattana, S., Yao, C.Y., Sangvanich, P., Roengsumran, S., and Hsu, W.H. (2006). Slow Acting Protein Extract from Fruit Pulp of Momordica charantia with Insulin Secretagogue and Insulinomimetic Activities. Biol Pharm Bull 29, 1126-1131. Zhou, J., Livak, M.F., Bernier, M., Muller, D.C., Carlson, O.D., Elahi, D., Maudsley, S., and Egan, J.M. (2007). Ubiquitination is involved in glucose-mediated downregulation of GIP receptors in islets. Am J Physiol Endocrinol Metab 293, E538-547. Zimmet, P., Alberti, K.G., and Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature 414, 782-787. 行政院衛生署國民健康局 (2007). 修正我國代謝症候群之判定標準. 呂佩諭 (2008). 篩選最具改善糖尿病前期患者血糖、血脂異常之苦瓜品系. Unpublished. 呂佩諭、林育嬋 (2007). 探討山苦瓜改善血糖與血脂代謝異常可能活性成份. Unpublished. 李天瑞 (2008). 數種食材萃物對脂肪或肌肉細胞葡萄糖攝取之影響. 國立台灣大學微生物與生化學研究所碩士論文. 許珊菁 (2006). 鼠模式中高脂飲食、肥胖與脂質調控基因之表現. 國立台灣大學微生物與生化學研究所博士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46368 | - |
dc.description.abstract | 第二型糖尿病發生前乃會經過糖尿病前期,判定標準為禁食血糖與葡萄糖耐受性異常,因此如何於糖尿病前期有效地控制血糖,便成為避免發展成第二型糖尿病的重點之一。早期苦瓜為學界所知之降血糖成份,乃是透過皮下或是腹腔注射投予以達到功效之植物胰島素,然而亦有許多文獻指出,以口服的方式給予苦瓜可降低血糖。本實驗室過去研究顯示:口服山苦瓜之降血糖活性存在於水萃物、且會受熱破壞;攝取山苦瓜補充飲食之動物有較高之 insulinogenic index、以及肝臟 dpp4 (dipeptidyl peptidase 4) 基因表現較低之特徵。因此,本實驗假說為:苦瓜降血糖機制之一乃是透過「腸泌素效應」- incretin effect。
細胞實驗中,建立腸道內分泌細胞株 STC-1 之 GLP-1 (glucagon-like peptide-1) 分泌量分析作為初步篩選苦瓜降血糖物質之平台,結果發現:山苦瓜水萃物刺激 GLP-1 分泌之倍數最高;有趣的是,苦瓜苦味粗萃物亦具有活化 GLP-1 分泌之潛力。進一步評估苦瓜於動物體透過 incretin effect 降低血糖之可能,選用以 30% 高奶油飲食誘發高血糖症狀之 C57BL/6J 公鼠,結果發現:單一劑量急性投予水萃物中、3 kD 以下小分子區分物可降低血糖,並且伴隨血液胰島素與 GLP-1 濃度增加;此功效受到 GLP-1 受器之拮抗物 Exendin-9 的抑制、但卻不影響血液 DPP4 活性。推測此萃物並非透過抑制 GLP-1 之降解、而是刺激腸道內分泌 L 細胞分泌 GLP-1,進而活化胰臟 beta 細胞分泌胰島素,與細胞實驗之結果吻合。此外,刺激 GLP-1 分泌活性成份中,可能有一些是苦瓜中的苦味化合物,活化了 L 細胞上的苦味受器以刺激 GLP-1 分泌。 本研究首次發現:苦瓜水萃物中 3 kD 以下小分子區分物,透過刺激 GLP-1 分泌、而活化胰臟 beta 細胞分泌胰島素之腸泌素效應,以達到降低血糖之功效。 | zh_TW |
dc.description.abstract | The health impact of type 2 diabetes and impaired glucose homeostasis has become a significant public health concern. Bitter gourd (BG) has been used to treat diabetes in Indian traditional medicine. Early research has isolated an insulin-like peptide from BG and showed its hypoglycemic effect via intraperitoneal or subcutaneous administration. Nevertheless, recent studies demonstrated that orally administered BG also lowered blood glucose. Our previous feeding studies in C57BL/6J mice showed that the water extract (WE) of BG had best hypoglycemic activity which could be destroyed by heating. Based on the facts that bitter gourd diet had higher insulinogenic index during OGTT and lower dpp4 mRNA expression in liver, we hypothesized that one of the mechanisms for the hypoglycemic effect of bitter gourd was through incretin effect.
BG WE was separated by ultra-filtration which resulted in a small molecule (< 3kD, WES) and a large molecule (>3kD, WEL) fractions. WE and WES were further hydrolyzed by beta-glucosidase and sequentially extracted with ethyl acetate and butanol. These subfractions were evaluated for their incretin potential by measuring GLP-1 secretions of treated STC-1 cells, a murine enteroendocrine cell line. It was found that WE and most of all of its subfractions dose-dependently enhanced GLP-1 secretion. Interestingly, the crude extract of BG bitter tastants also had a GLP-1 inducing effect. To assess the incretin effect and glucose homeostasis of BG in vivo, C57BL/6J male mice were fed a high fat diet to induce hyperglycemia. A single dose administration of the WES to these mice significantly lowered plasma glucose which was associated with higher levels of plasma insulin and GLP-1. This hypoglycemic effect of WES was blocked by GLP-1 receptor antagonist, Exendin-9. No association of plasma DPP4 activity was observed. These data suggested that the small MW active fraction of BG might contain (a) GLP-1 secretagogue(s) which may induce the secretion of GLP-1 in L cells. Higher circulating GLP-1 then activates GLP-1 receptor on pancreatic cells and stimulates insulin secretion. It appears that WE subfractions did not inhibit GLP-1 degradation. It is speculated that bitter tastants in BG might contribute, at least in part, to the enhanced GLP-1 secretion in enteroendocrine cells through the bitter taste receptors. This is the first study demonstrating an incretin effect of bitter gourd water extract. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:05:40Z (GMT). No. of bitstreams: 1 ntu-99-R97b47302-1.pdf: 8608428 bytes, checksum: 0e66aa5e0a6322e15269abbb8550e5a8 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要 ……………………………………………………………………………… i
英文摘要 ……………………………………………………………………………… ii 縮寫對照表 …………………………………………………………………………… iv 組別縮寫意義 ………………………………………………………………………… v 第一章 緒論…………………………………………………………………………… 1 第一節 研究動機與目的………………………………………………………… 1 第二節 文獻回顧………………………………………………………………… 2 一、代謝症候群與第二型糖尿病 ………………………………………… 2 二、Incretin effect…………………………………………………………… 4 (一) 定義……………………………………………………………… 4 (二) GLP-1 之合成…………………………………………………… 5 (三) GLP-1 之分泌…………………………………………………… 5 (四) GLP-1 之作用…………………………………………………… 6 (五) GLP-1 之降解與清除…………………………………………… 7 三、Incretin effect 相關指標異常與第二型糖尿病……………………… 8 四、GLP-1 治療糖尿病…………………………………………………… 9 五、腸道內分泌細胞與 incretin effect 降血糖之動物生理研究………… 10 六、苦瓜 …………………………………………………………………… 19 第三節 研究假說與架構………………………………………………………… 24 一、研究假說 ……………………………………………………………… 24 二、實驗架構 ……………………………………………………………… 24 第二章 山苦瓜水萃物暨其區分物對 STC-1 腸道內分泌細胞株分泌 GLP-1 之影響…………………………………………………………………………… 25 第一節 前言……………………………………………………………………… 25 第二節 材料與方法……………………………………………………………… 26 一、細胞株 ………………………………………………………………… 26 二、試劑 …………………………………………………………………… 26 (一) 細胞培養………………………………………………………… 26 (二) Real-time PCR 法分析基因表現………………………………… 27 (三) 處理樣品………………………………………………………… 28 三、儀器設備 ……………………………………………………………… 28 四、山苦瓜萃取物暨其區分物之製備 …………………………………… 29 五、實驗方法 ……………………………………………………………… 33 (一) 細胞培養………………………………………………………… 33 (二) 細胞處理及處理後培養液之 GLP-1 含量測定 ……………… 34 (三) GLP-1 基因 proglucagon mRNA 表現量分析………………… 35 六、數據整理與統計分析 ………………………………………………… 36 第三節 結果……………………………………………………………………… 37 一、山苦瓜各種萃物或化合物對 STC-1 細胞 GLP-1 分泌量之影響… 37 (一) 山苦瓜水萃物暨其區分物對 STC-1 細胞分泌 GLP-1 之影響 37 (二) 山苦瓜水萃物及小分子區分物經 beta-glucosidase 酵素水解後之產物對 STC-1 細胞分泌 GLP-1 之影響…………………… 38 (三) 山苦瓜苦味物質粗萃物與苦味化合物 denatonium benzoate 對 STC-1 細胞分泌 GLP-1 之影響…………………………… 40 (四) 山苦瓜酒精萃物暨其區分物對 STC-1 細胞分泌 GLP-1 之影響………………………………………………………………… 41 (五) 山苦瓜乙酸乙酯萃物暨其區分物對 STC-1 細胞分泌 GLP-1 之影響 …………………………………………………………… 41 (六) 其他成分對 STC-1 細胞分泌 GLP-1 之影響………………… 41 二、山苦瓜水萃物及其區分物對 STC-1 細胞 proglucagon mRNA 表現量之影響……………………………………………………………… 42 第四節 討論……………………………………………………………………… 52 一、山苦瓜刺激腸道內分泌細胞分泌 GLP-1 之可能成份 …………… 52 二、苦味物質調控葡萄糖恆定之可能機制 ……………………………… 54 三、山苦瓜刺激腸道內分泌細胞分泌 GLP-1 之可能機制 …………… 55 第五節 結論……………………………………………………………………… 56 第三章 長期餵食山苦瓜水萃物於鼠體所產生之 incretin effect ………………… 57 第一節 前言……………………………………………………………………… 57 第二節 材料與方法……………………………………………………………… 58 一、實驗大綱 ……………………………………………………………… 58 二、動物飼養 ……………………………………………………………… 59 三、飼料 …………………………………………………………………… 59 四、口服葡萄糖耐受性測試 ……………………………………………… 60 五、血漿 GLP-1 濃度分析 ……………………………………………… 61 六、胰島素耐受性測試 …………………………………………………… 62 七、動物犧牲 ……………………………………………………………… 62 八、血脂分析 ……………………………………………………………… 62 九、血漿 DPP4 酵素活性分析…………………………………………… 64 十、組織 DPP4 酵素活性分析…………………………………………… 64 十一、胰臟胰島素分析 …………………………………………………… 65 十二、肝脂分析 …………………………………………………………… 65 十三、Real-time PCR 法分析肝臟與副睪脂中 dpp4 之基因表現量…… 66 十四、數據整理與統計分析 ……………………………………………… 66 第三節 結果……………………………………………………………………… 67 一、體重變化、攝食量、飼料利用率與能量攝取………………………… 67 二、組織器官絕對與相對重量 …………………………………………… 67 三、血脂與肝脂分析 ……………………………………………………… 67 四、葡萄糖恆定與 incretin effect 指標分析 …………………………… 68 第四節 討論……………………………………………………………………… 91 第五節 結論……………………………………………………………………… 97 第四章 單一劑量投予山苦瓜水萃物於鼠體所產生之 incretin effect …………… 98 第一節 前言……………………………………………………………………… 98 第二節 材料與方法……………………………………………………………… 99 一、動物飼養 ……………………………………………………………… 99 二、Exendin-9 (GLP-1receptor 拮抗物) 投予試驗 ……………………… 99 三、山苦瓜水萃物小分子區分物投予試驗及Exendin-9 介入對於血糖變化之影響……………………………………………………………… 100 四、山苦瓜水萃物小分子區分物投予對於血糖、GLP-1 與胰島素分泌之影響………………………………………………………………… 100 五、山苦瓜水萃物小分子區分物經 beta-glucosidase 酵素水解後之乙酸乙酯萃物 (Se-E) 投予對於血糖與 GLP-1 分泌之影響……………… 100 六、山苦瓜水萃物投予對於血糖與 GLP-1 分泌之影響………………… 100 七、山苦瓜水萃物小分子區分物投予對於 ipGTT 試驗中、血糖與血液 DPP4 活性之影響 …………………………………………………… 101 八、數據整理與統計分析 ………………………………………………… 101 第三節 結果……………………………………………………………………… 102 第四節 討論……………………………………………………………………… 111 第五節 結論……………………………………………………………………… 114 第五章 綜合討論與總結論…………………………………………………………… 115 第一節 綜合討論………………………………………………………………… 115 第二節 總結論…………………………………………………………………… 117 第六章 參考文獻…………………………………………………………………… 118 | |
dc.language.iso | zh-TW | |
dc.title | 山苦瓜萃物暨其區分物之腸泌素效應 | zh_TW |
dc.title | Incretin Effects of Momordica charantia L. | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林璧鳳,呂紹俊,趙蓓敏,蔡帛蓉 | |
dc.subject.keyword | 腸泌素效應,GLP-1,腸道內分泌 L 細胞,苦瓜,降血糖, | zh_TW |
dc.subject.keyword | incretin effect,GLP-1,enteroendocrine L cell,bitter gourd,antihyperglycemia, | en |
dc.relation.page | 129 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-27 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 8.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。