Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華
dc.contributor.authorWen-Ke Huangen
dc.contributor.author黃文科zh_TW
dc.date.accessioned2021-06-15T05:05:16Z-
dc.date.available2012-07-28
dc.date.copyright2010-07-28
dc.date.issued2010
dc.date.submitted2010-07-27
dc.identifier.citation王振瀾、尹華文(1991)栽培地區及生長季節對土肉桂葉精油含量成分之影響。
林業試驗所研究報告季刊 6(3): 313-328
李漢中、鄭森松、劉如芸、張上鎮(2003)不同地理品系土肉桂葉部精油之化學多態性。中華林學季刊 36(4): 411-422
何坤益 (2006) 台灣產土肉桂、山肉桂、及胡氏肉桂(樟科)之遺傳變異與分類地位。生物學報 41(2): 93-102
張上鎮 (2002) 土肉桂葉子精油的生物活性與應用。台灣林業 28(6): 31-5
陳盈如 (2003) 應用固相微萃取技術於土肉桂及台灣肖楠葉揮發成分之分析。國立台灣大學森林環境暨資源學系碩士論文
Achnine, L., E. B. Blancaflor, S. Rasmussen and R. A. Dixon (2004) Colocalization of L-phenylalanine ammonialyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16: 3098-3109.
Allina, S. M., A. Pri-Hadash, D. A. Theilmann, B. E. Ellis and C. J. Douglas (1998) 4-Coumarate: conezyme A ligase (4CL) in hybrid poplar (Populus trichocarpa X Populus deltoides. Properties of native enzymes, cDNA cloning and analysis of recombinant enzymes. Plant Physiology 116: 743-754.
Ananda, B. S., G. W. Kazmer, L. Hinckley, S. M. Andrew and K. Venkitanarayanan (2009) Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. Journal of Dairy Science 92(4): 1423-1429.
Andersen, J. R., I. Zein, G. Wenzel, B. Krützfeldt, J. Eder, M. Ouzunova and T. Lübberstedt (2007) High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. Theoretical and Applied Genetics 114(2): 307-319.
Baghdady, A., A. S. Blervacq, L. Jouanin, J. Grima-Pettenati, P. Sivadon and S. Hawkins (2006) Eucalyptus gunnii CCR and CAD2 promoters are active in lignifying cells during primary and secondary xylem formation in Arabidopsis thaliana. Plant Physiology and Biochemistry 44(11-12): 674-683.
Baltas, M., C. Lapeyre, F. Bedos-Belval, M. Maturano, P. Saint-Aguet, L. Roussel, H. Duran and J. Grima-Pettenati (2005) Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. Plant Physiology and Biochemistry 43: 746-753.
Becker-AndreÂ, M., P. Schulze-Lefert and K. Hahlbrock (1991) Structural comparison, modes of expression, and putative cisacting elements of the two 4-coumarate: CoA ligase genes in potato. The Journal of Biological Chemistry 266: 8551-8559.
Bell-Lelong, D. A., J. C. Cusumano, K. Meyer and C. Chapple (1997) Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiology 113(3): 729-738.
Boerjan, W., J. Ralph and M. Baucher (2003) Lignin biosynthesis. Annual Review of Plant Biology 54: 519-546.
Bohlmann, J., G. Meyer-Gauen and R. Croteau (1998) Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences of the United States of America 95: 4126-4133.
Borg-Karlson, A. K., C. R. Unelius, I. Valterova and L. A. Nilsson (1996) Floral fragrance chemistry in the early flowering shrub Daphne mezereum. Phytochemistry 41: 1477-1483.
Cane, D. E., Q. Xue and B. C. Fitzsimons (1996) Trichodiene synthase probing the role of the highly conserved aspartate-rich region by site-directed mutagenesis. Biochemistry 35: 12369-12376.
Chang, S. T. and S. S. Cheng (2002) Antitermitic activity of leaf essential oils and components from Cinnamomum osmophloeum. Journal of Agricultural and Food Chemistry 50(6): 1389-1392.
Chang, S. T., P. F. Chen and S. C. Chang (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. Journal of Ethnopharmacology 77(1): 123-127.
Chapple, C. (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annual Review of Plant Physiology and Plant Molecular Biology 49: 311-343.
Cheng, S. S., J. Y. Liu, C. G. Huang, Y. R. Hsui, W. J. Chen and S. T. Chang (2009) Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresource Technology 100(1): 457-464.

Cheng, S. S., J. Y. Liu, K. H. Tsai, W. J. Chen and S. T. Chang (2004) Chemical Composition and Mosquito Larvicidal Activity of Essential Oils from Leaves of Different Cinnamomum osmophloeum Provenances. Journal of Agricultural and Food Chemistry 52: 4395-4400.
Cocchiara, J., C. S. Letizia, J. Lalko, A. Lapczynski and A. M. Api (2005) Fragrance material review on cinnamaldehyde. Food and Chemical Toxicology 43(6): 867-923.
Cochrane, F. C., L. B. Davin and N. G. Lewis (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65(11): 1557-1564.
Crowell, A. L., D. C. Williams, E. M. Davis, M. R. Wildung and R. Croteau (2002) Molecular cloning and characterization of a new linalool synthase. Archives of Biochemistry and Biophysics 405: 112-121.
Da Cunha, A. (1988) Purification, characterization and induction of L-phenylalanine ammonia-lyase in Phaseolus vulgaris. European Journal of Biochemistry 178(1): 243-248.
Deshpande, A. S., K. K. Surendranathan and P. M. Nair (1993) The phenyl propamoid pathway enzymes in Solanum tuberosum exist as a multienzyme complex. Indian Journal of Biochemistry and Biophysics 30(1): 36-41.

Ehlting, J., B. Hamberger, R. Million-Rousseau and D. Werck-Reichhart (2006) Cytochromes P450 in phenolic metabolism. Phytochemistry Reviews 5: 239-270.
Ehlting, J., D. Büttner, Q. Wang, C. J. Douglas, I. E. Somssich and E. Kombrink (1999) Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. The Plant Journal 19(1): 9-20.
Ehlting, J., J. J. K. Shin and C. J. Douglas (2001) Identification of 4-coumarate: coenzyme A ligase (4CL) substrate recognition domains. The Plant Journal 27(5): 455-465.
Endler, A., S. Martens, F. Wellmann and U. Matern (2008) Unusually divergent 4-coumarate: CoA-ligases from Ruta graveolens L.. Plant Molecular Biology 67: 335-346.
Gershenzon, J., D. McCaskill, J. I. M. Rajaonarivony, C. Mihaliak, F. Karp and R. Croteau (1992) Isolation of secretory-cells from plant glandular trichomes and their use in biosynthetic-studies of monoterpenes and other gland products. Analytical Biochemistry 200: 130-138.
Gross, G. G. and W. Kreiten (1975) Reduction of coenzyme a thioesters of cinnamic acids with an enzyme preparation from lignifying tissue of Forsythia. FEBS Letters 54(2): 259-262.
Guillaumie, S., H. San-Clemente, C. Deswarte, Y. Martinez, C. Lapierre, A. Murigneux, Y. Barrière, M. Pichon and D. Goffner (2007) MAIZEWALL. Database and Developmental Gene Expression Profiling of Cell Wall. Plant Physiology 143(1): 339-363.
Gutierrez-Alcala, G., C. Gotor, A. J. Meyer, M. Fricker, J. M. Vega and L. C. Romero (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proceedings of the National Academy of Sciences of the United States of America 97(20): 11108-11113.
Honda, K., H. Omura and N. Hayashi (1998) Identification of floral volatiles from Ligustrum japonicum that stimulate flower visiting by cabbage butterfly Pieris rapae. Journal of Chemical Ecology 24: 2167-2180.
Hu, T. W., Y. T. Lin and C. K. Ho (1985) Natural variation of chemical components of the leaf oil of Cinnamomum osmophloeum Kaneh. Bulletin Taiwan Forest Research Institute 78: 296-313.
Hu, W. J., A. Kawaoka, C. J. Tsai, J. H. Lung, K. Osakabe, H. Ebinuma and V. L. Chiang (1998) Compartmentalized expression of two structurally and functionally distinct 4- coumarate-CoA ligase genes in aspen (Populus tremuloides). Proceedings of the National Academy of Sciences of the United States of America 95: 5407-5412.
Jia, J. W., J. Crock, S. Lu, R. Croteau and X. Y. Chen (1999) (3R)-Linalool synthase from Artemisia annua L.: cDNA isolation, characterization, and wound induction. Archives of Biochemistry and Biophysics 372: 143-149.
Kawasaki, T., H. Koita, T. Nakatsubo, K. Hasegawa, K. Wakabayashi, H. Takahashi, K. Umemura, T. Umezawa and K. Shimamoto (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proceedings of the National Academy of Sciences of the United States of America 103(1): 230-235.
Knobloch, K. H. and K. Hahlbrock (1975) Isoenzymes of p-coumarate: CoA ligase from cell suspensions of Glycine max. European Journal of Biochemistry 52: 311-320.
Knobloch, K. H. and K. Hahlbrock (1977) 4-Coumarate: CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm. Archives of Biochemistry and Biophysics 184: 237-248.
Knud, L. (2004) Molecular cloning and characterization of cDNAs encoding cinnamoyl CoA reductase (CCR) from barley (Hordeum vulgare) a and potato
(Solanum tuberosum). Journal of Plant Physiology 161: 105-112.
Knudsen, J. T. and L. Tollsten (1993) Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Botanical Journal of the Linnaean Society 113: 263-284.
Koopmann, E. and K. Hahlbrock (1997) Differentially regulated NADPH: cytochrome P450 oxidoreductases in parsley. Proceedings of the National Academy of Sciences of the United States of America 94: 14954-14959.
Koopmann, E., E. Logemann and K. Hahlbrock (1999) Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiology 119(1): 49-56.
Koukol, J. and E. E. konn (1961) The metabolism of aromatic compounds in higher plants. Biological Chemistry 236: 2692-2698.
Kumar, A. and B. E. Ellis (2001) The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiology 127: 230-239.
Lacombe, E., S. Hawkins, J. Van Doorsselaere, J. Piquemal, D. Goffner, O. Poeydomenge, A. M. Boudet and J. Grima-Pettenati (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. The Plant journal: for cell and molecular biology 11(3): 429-441.
Lee, D., M. Ellard, L. A. Wanner, K. R. Davis and C. J. Douglas (1995) The Arabidopsis thaliana 4-coumarate: CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Molecular Biology 28: 5871-5884.
Leplé, J. C., R. Dauwe, K. Morreel, V. Storme, C. Lapierre, B. Pollet, A. Naumann, K. Y. Kang, H. Kim, K. Ruel, A. Lefèbvre, J. P. Joseleau, J. Grima-Pettenati, R. De Rycke, S. Andersson-Gunnerås, A. Erban, I. Fehrle, M. Petit-Conil, J. Kopka, A. Polle, E. Messens, B. Sundberg, S. D. Mansfield, J. Ralph, G. Pilate and W. Boerjan (2007)Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. The Plant Cell 19(11): 3669-3691.
Liu, Q., M. S. Bonness, M. Liu, E. Seradge, R. A. Dixon and T. J. Mabry (1995) Enzymes of B-ring-deoxy flavonoid biosynthesis in elicited cell cultures of 'old man' cactus (Cephalocereus senilis). Archives of Biochemistry and Biophysics 321(2): 397-404.
Lu, S., Y. Zhou, L. Li and V. L. Chiang (2006) Distinct roles of cinnamate 4-hydroxylase genes in Populus. Plant and Cell Physiology 47(7): 905-914.
Ma, Q. H. (2007) Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Journal of Experimental Botany 58(8): 2011-2021.
Ma, Q. H. and B. Tian (2005) Biochemical characterization of a cinnamoyl-CoA reductase from wheat. Biological Chemistry 388: 553-560.
McCaskill, D., J. Gershenzon and R. Croteau (1992) Morphology and monoterpene biosynthetic capabilities of secretory-cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L). Planta 187: 445-454.
Mizutani, M., D. Ohta and R. Sato (1997) Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiology 113(3): 755-763.
Ni, W., T. Fahrendorf, G. Ballance, C. Lamb and R. Dixon (1996) Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenlpropanoid pathway genes in elicitor-induced cell suspension cultures. Plant Molecular Biology 30: 427-438.
Olesen, J. M. and J. T. Knudsen (1994) Scent profiles of flower colour morphs of Corydalis cava (Fumariaceae) in relation to foraging behaviour of bumblebee queens (Bombus terrestris). Biochemical Systematics and Ecology 22: 231-237.
Olsen, K. M., U. S. Lea, R. Slimestad, M. Verheul and C. Lillo (2008) Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. Journal of Plant Physiology 165(14): 1491-1499.
Pham-Delgue, M. H., P. Eteant, E. Guichard, R. Marilleau, P. Douault, J. Chauffaille and C. Masson (1990) Chemicals involved in honeybee-sunflower relationship. Journal of Chemical Ecology 16: 3053-3065.
Pichon, M., I. Courbou, M. Beckert, A. M. Boudet and J. Grima-Pettenati (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Molecular Biology 38(4): 671-676.
Raes, J., A. Rohde, J. H. Christensen, Y. Van de Peer and W. Boerjan (2003) Genome-Wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology 133: 1051-1071.
Ro, D. K., N. Mah, B. E. Ellis and C. J. Douglas (2001) Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoides) cinnamate 4-hydroxylase. Plant Physiology 126: 317-329.
Rohloff, J. and A. M. Bones (2005) Volatile profiling of Arabidopsis thaliana – putative olfactory compounds in plant communication. Phytochemistry 66: 1941-1955.
Schneider, K., K. Hovel, K. Witzel, B. Hamberger, D. Schomburg, E. Kombrink and H. P. Stuible (2003) The substrate specificity-determining amino acid code of 4-coumarate: CoA ligase. Proceedings of the National Academy of Sciences of the United States of America 100(14): 8601-8604.
Shaw, N. M., G. P. Bolwell and C. Smith (1990) Wound-induced phenylalanine ammonia-lyase in potato (Solanum tuberosum) tuber discs. Significance of glycosylation and immunolocalization of enzyme subunits. The Biochemical Journal 267(1): 163-170.
Starks, C. M., K. W. Back, J. Chappell and J. P. Noel (1997) Structural basis for
cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277: 1815-1820.
Sugawara, Y., C. Hara, T. Aoki, N. Sugimoto and T. Masujima (2000) Odor distinctiveness between enantiomers of linalool: difference in perception and responses elicited by sensory test and forehead surface potential wave measurement. Chemical Senses 25: 77-84.
Thien, L. B., P. Bernhardt, G. W. Gibbs, O. Pellmyr, G. Bergstrom, I. Groth and G. McPherson (1985) The pollination of Zygogynum (Winteraceae) by a moth Sabatinca (Micropterigidae): An ancient association? Science 227: 540-542.
Uhlmann, A. and J. Ebel (1993) Molecular cloning and expression of 4-coumarate: coenzyme A ligase, an enzyme involved in the resistance of soybean (Glycine max) against pathoghen infection. Plant Physiology 102: 1147-1156.
Van der Rest, B., S. Danoun, A. M. Boudet and S. F. Rochange (2006) Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. Journal of Experimental Botany 57(6): 1399-1411.
Voo, K. S., R. W. Whetten, D. M. O’Malley and R. R. Sederoff (1995)
4-coumarate: coenzyme a ligase from loblolly pine xylem. Isolation, characterization,
and complementary DNA cloning. Plant Physiology 108(1): 85-97.
Wang, S. Y., P. F. Chen and S. T. Chang (2005) Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technology 96(7): 813-818.
Wang, S.Y., C. W. Yang, J. W. Liao, W. W. Zhen, F. H. Chu and S. T.Chang (2008) Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine 15: 940-945.
Wengenmayer, H., J. Ebel and H. Grisebach (1976) Enzymic synthesis of lignin precursors. Purification and properties of a cinnamoyl-CoA: NADPH reductase from cell suspension cultures of soybean (Glycinemax). European Journal of Biochemistry 65: 529-536.
Werck-Reichhart, D. (1995) Cytochromes P450 in phenylpropanoid metabolism. Drug Metabolism and Drug Interactions 12: 221-243.
Yokomi, N. and M. Ito (2009) Influence of composition upon the variety of tastes in Cinnamomi Cortex. Natural medicines = Shōyakugaku zasshi / The Japanese Society of Pharmacognosy 63(3): 261-266.
Zhang, X. H. and V. L. Chiang (1997) Molecular cloning of 4-coumarate: coenzyme a ligase in loblolly pine and the roles of this enzvme in the biosynthesis of lignin in compression wood. Plant Physiology 13: 65-74.
Zucca, P., M. Littarru, A. Rescigno and E. Sanjust (2009) Cofactor recycling for selective enzymatic biotransformation of cinnamaldehyde to cinnamyl alcohol. Bioscience, Biotechnology and Biochemistry 73(5): 1224-1226.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46359-
dc.description.abstract本研究利用退化性引子釣取土肉桂桂皮醛和芳樟醇生合成之相關基因全長,其中phenylalanine ammonia-lyase (PAL)基因之5’ UTR是11 bp,coding region是2127 bp可轉譯出908個胺基酸,3’UTR是192 bp;trans-cinnamate-4-hydroxylase (C4H)基因之5’UTR是76 bp,coding region是1518 bp可轉譯出505個胺基酸,3’UTR是129 bp;4-coumarate:CoA ligase 1 (4CL1)基因之5’UTR是69 bp,coding region是1620 bp可轉譯出539個胺基酸,3’UTR是378 bp;4-coumarate:CoA ligase 3 (4CL3)基因之5’UTR是232 bp,coding region是1698 bp可轉譯出565個胺基酸,3’UTR是293bp;cinnamoyl-CoA reductase (CCR)基因之5’UTR是95 bp,coding region是993 bp可轉譯出330個胺基酸,3’UTR是325 bp;芳樟醇合成酶基因之5’UTR是34 bp,coding region是1755 bp可轉譯出584個胺基酸,3’UTR是209 bp。隨後將PAL、C4H、4CL1、4CL3和CCR等五個基因轉入阿拉伯芥中,利用具有35S promoter的pBI121載體大量表現基因,並於35S promoter和轉殖基因上之序列設計引子,確認基因是否成功轉入阿拉伯芥,成株後利用固相微萃取吸附,於GC-MS分析主成分,試驗結果發現在C4H、4CL1、4CL3和CCR等四個基因轉殖株中皆有發現桂皮醛增加的情形,證實C4H、4CL1、4CL3和CCR等四個基因確實與桂皮醛的生合成相關。
針對土肉桂不同化學品系之14種源進行主成分分析,以反轉錄聚合酶連鎖反應進行檢測結果,得知土肉桂不同種源之桂皮醛和芳樟醇含量與相對應基因表現量並無相關性,而釣取不同種源之4CL3、CCR和LIS之基因全長,發現在4CL3基因片段中有一個桂皮醛種源特定的胺基酸,可用來區分是否為桂皮醛種源;在芳樟醇合成酶基因上,也有發現多個可以用來區分芳樟醇、桂皮醛和樟腦種源之核酸位置。
zh_TW
dc.description.abstractPhenylalanine ammonia-lyase (PAL), trans-cinnamate- 4-hydroxylase (C4H), 4-coumarate: coenzyme A ligase 1 and 3 (4CL1 and 4CL3), cinnamoyl-CoA reductase (CCR) and linalool synthase (LIS) in Cinnamomum osmophloeum were cloned. The PAL has a 11 bp 5’ UTR, a 2127 bp ORF predicting 908 amino acid, and a 192 bp 3’UTR. The C4H has a 76 bp 5’UTR, a 1518 bp ORF predicting 505 amino acid, and a 129 bp 3’UTR. The 4CL1 has a 69 bp 5’UTR, a 1620 bp ORF predicting 539 amino acid, and a 378 bp 3’UTR. The 4CL3 has a 232 bp 5’UTR, a 1698 bp ORF predicting 565 amino acid, and a 293 bp 3’UTR. The CCR has a 95 bp 5’UTR, a 993 bp ORF predicting 330 amino acid, and a 325 bp 3’UTR. The LIS has a 34 bp 5’UTR, a 1755 bp ORF predicting 585 amino acid, and a 209 bp 3’UTR. Then these genes (PAL, C4H, 4CL1, 4CL3 and CCR) were transformed into Arabidopsis using pBI121 vector. After the genomic DNA and RNA of these transgenic plants were certificated, the volatile compounds were analyzed by solid phase microextration (SPME) and gas chromatography-mass spectrometry (GC-MS). These results demonstrate that the expressions of C4H, 4CL1, 4CL3 and CCR were correlated with cinnamaldehyde biosynthesis.
The expression level of genes involved in cinnamaldehyde and linalool synthsis from 14 different sources were analyzed by RT-PCR. The result indicates the major compound of chemotype have no relationship with RNA expression. Comparison the amino acid sequence of 4CL3, CCR, and LIS genes on various type of Cinnamomum osmophloeum, indicated some specific residues of 4CL3 were strongly related with cinnamaldehyde type and some nucleotides of LIS gene were correlated with specific chemotype.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:05:16Z (GMT). No. of bitstreams: 1
ntu-99-R95625030-1.pdf: 2373704 bytes, checksum: ead18a8f4d7d826877193d69d683635e (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 viii
表目錄 x
前言 1
一、前人研究 3
1.1 桂皮醛生合成途徑及參與之基因 3
1.1.1 桂皮醛生合成途徑 3
1.1.2 Phenylalanine ammonia-lyase (PAL) 5
1.1.3 trans-Cinnamate-4-hydroxylase (C4H) 5
1.1.4 4-Coumarate:CoA ligase (4CL) 6
1.1.5 Cinnamoyl-CoA reductase (CCR) 8
1.2 芳樟醇生合成途徑介紹 10
1.2.1 芳樟醇之介紹 10
1.2.2 芳樟醇生合成途徑 10
1.2.3 芳樟醇生合成基因 11
1.3 阿拉伯芥轉殖系統之選擇 11
二、材料與方法 12
2.1 植物材料 12
2.1.1 土肉桂 12
2.1.2 阿拉伯芥 12
2.2 Genomic DNA和Total RNA之萃取 12
2.3 cDNA之合成 12
2.4 退化性引子之設計 13
2.5 (反轉錄)聚合酶連鎖反應 13
2.6 5’端及3’端的選殖 15
2.7 不同種源之mRNA表現 17
2.8 土肉桂不同種源之4CL3片段、CCR和LIS基因全長之釣取 17
2.9 接合反應(Ligation) 18
2.10 轉型作用(Transformation) 18
2.11 質體DNA抽取與序列確認 19
2.12 多條序列比對與演化樹繪製 19
2.13 阿拉伯芥轉殖之載體建構及轉殖 20
2.14 阿拉伯芥轉殖株之DNA確認和mRNA表現量評估 21
2.15 土肉桂和阿拉伯芥GC-MS之分析條件 23
2.16 阿拉伯芥花軸高度測量 23
三、結果 24
3.1 從土肉桂釣取桂皮醛和芳樟醇生合成相關之基因 24
3.2 阿拉伯芥選殖及GC-MS成分分析 38
3.2.1 阿拉伯芥基因轉殖株轉基因插入之確認、RT-PCR和成分分析38
3.2.1.1 PAL轉殖株 38
3.2.1.2 C4H轉殖株 38
3.2.1.3 4CL1轉殖株 40
3.2.1.4 4CL3轉殖株 40
3.2.1.5 CCR轉殖株 41
3.3 各基因轉殖株花軸長度 42
3.4 土肉桂14種源之桂皮醛和芳樟醇之濃度 44
3.5 六基因不同種源之RT-PCR 45
3.6 4CL3、CCR和LIS不同種源之序列比對與親源分析 46
3.6.1 4CL3序列比對 46
3.6.2 CCR序列比對 47
3.6.3 LIS序列比對 48
3.7 土肉桂LIS基因不同種源和其他物種之親緣性關係 53
四、討論 54
4.1 影響土肉桂各種源主成分濃度之因素 54
4.2 影響土肉桂桂皮醛生合成可能因子 54
4.3 影響其他物種桂皮醛生合成可能因子 56
4.4 影響土肉桂芳樟醇生合成可能因子 57
4.5 阿拉伯芥各基因轉殖株無法大量生合成桂皮醛之因子 57
4.6 桂皮醛生合成假設之影響因子及模式 58
五、結論 59
六、參考文獻 60
dc.language.isozh-TW
dc.subject桂皮醛zh_TW
dc.subject土肉桂zh_TW
dc.subject芳樟醇zh_TW
dc.subjectcinnamaldehydeen
dc.subjectlinalool synthaseen
dc.subjectCinnamomum osmophloeumen
dc.title土肉桂桂皮醛及芳樟醇相關之生合成基因的選殖及功能分析zh_TW
dc.titleCloning and Characterization of Cinnamaldehyde and Linalool Synthase Gene from Cinnamomoum osmophloeumen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王升陽,孟孟孝,張淑華,陳振榮
dc.subject.keyword土肉桂,桂皮醛,芳樟醇,zh_TW
dc.subject.keywordCinnamomum osmophloeum,cinnamaldehyde,linalool synthase,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2010-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved