請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46355
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王興華 | |
dc.contributor.author | Chi-Kai Fong | en |
dc.contributor.author | 馮志凱 | zh_TW |
dc.date.accessioned | 2021-06-15T05:05:05Z | - |
dc.date.available | 2012-08-03 | |
dc.date.copyright | 2010-08-03 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-27 | |
dc.identifier.citation | Berthier, J., Clementz, P., Raccurt, O., Jary, D., Claustre, P., Peponnet, C., and Fouillet, Y., “Computer Aided Design of an EWOD Microdevice,” Sensors and Actuators A: Physical, 2006, 127, 283-294.
Darhuber, A. A. and Valentino, J. P., “Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays,” Journal of Microelectromechanical Systems, 2003, 12, 873-879. Daniel, S., Chaudhury, M. K., and Chen, J. C., “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface,” Science, 2001, 291, 633-636. Fries, D. M. and Philipp von Rohr, R., “Liquid Mixing in Gas-Liquid Two-Phase Flow by Meandering Microchannels,” Chemical Engineering Science, 2009, 64, 1326-1335. Faucheux, N., Schweiss, R., Utzow, K. L., Werner, C., and Groth, T., “Self-Assembled Monolayers with Different Terminating Groups as Model Substrates for Cell Adhesion Studies,” Biomaterials, 2004, 25, 2721-2730. Fang, W. F. and Yang, J. T., “A Novel Microreactor with 3D Rotating Flow to Boost Fluid Reaction and Mixing of Viscous Fluids,” Sensors and Actuators B:Chemical, 2009, 140, 629-642. Ichimura, K., Oh, S. K. and Nakagawa, M., “Light-Driven Motion of Liquids on a Photoresponsive Surface,” Science, 2000, 288, 1624-1626. Ichiyanagi, M., Sasaki, S., Sato, Y., and Hishida, K., “Micro-PIV/LIF Measurements on Electrokinetically-Driven Flow in Surface Modified Microchannels,” Journal of Micromechanics and Microengineering, 2009, 19, 1-9. Jiang, Y. J., Umemura, A., and Law, C. K., “An Experimental Investment on the Collision Behavior of Hydrocarbon Droplets,” Journal of Fluid Mechanics, 1992, 234, 171-190. J. Fowler, H. Moon, and C. J. Kim, Proceedings of IEEE Conf. on MEMS, Las Vegas, 2002, 97-100. Koutsiaris, A. G., Mathioulakis, D. S., and Tsangaris, S., “Microscope PIV for Velocity Field Measurement of Particle Suspensions Flowing Inside Glass Capillaries,” Measurement Science and Technology, 1999, 10, 1037-1046. King, C., Walsh, E., and Grimes, R., “PIV Measurements of Flow within Plugs in a Microchannel,” Microfluid and Nanofluid, 2007, 3, 463-472. Kinoshita, H., Kaneda, S., Fujii, T., and Oshima, M.,“Three-Dimensional Measurement and Visualization of Internal Flow of a Moving Droplet Using Confocal Micro- PIV,” Lab on a Chip, 2006, 7, 338-346. Kim, J. and Longmire, E. K., “Investigation of Binary Drop Rebound and Coalescence in Liquids Using Dual-Field PIV Technique,” Experiments in Fluids, 2009, 47, 263-278. Knieling, T., Lang, W., and Benecke, W., “Gas Phase Hydrophobisation of MEMS Silicon Structures with Self-Assembling Monolayers for Avoiding in-use Sticking,” Sensors and Actuators A:Physical, 2006, 126, 13-17. Lu, H. W., Bottausci, F., Fowler, J. D., Bertozzi, A. L., Meinhart, C., and Kim, C. J., “A Study of EWOD-Driven Droplets by PIV Investigation,” Labon a Chip, 2008, 8, 456-461. Lai, Y. H., Hsu, M. H., and Yang, J. T., “Enhanced Mixing of Droplets During Coalescence on a Surface with a Wettability Gradient,” Lab on a Chip, 2010. Lai, Y. H., Yang, J. T., and Shieh, D. B., “ A Microchip Fabricated with a Vapor- Diffusion Self-Assembled-Monolayer Method to Transport Droplets Across Superhydrophobic to Hydrophilic Surfaces,” Lab on a Chip, 2010, 10, 499-504. Lee, S. W. and Laibinis, P. E., “Directed Movement of Liquids on Patterned Surfaces Using Noncovalent Molecular Adsorption,” Journal of American Chemical Society, 2000, 122, 5395-5396. MANZ, A., GRABER, N., and WIDMER, H. M., “Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing,” Sensors and Actuators B: Chemical, 1990, B1, 244-248. Meinhart, C. D., Wereley, S. T., and Santiago, J. G., “PIV Measurements of a Microchannel Flow,” Experiments in Fluids,1999, 27, 414-419. Patankar, N. A., “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, 2003, 19, 1249-1253. Paik, P., Vamsee, K., Pamula, and Richard, B. F., “Rapid Droplet Mixers for Digital Microfluidic Systems,” Lab on a Chip, 2003, 13, 253-259. Sarrazin, F., Loubie` re, K., Prat, L., and Gourdon, C., “Experimental and Numerical Study of Droplets Hydrodynamics in Microchannels,” AIChE Journal, 2006, 52, 4061-4070. Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J., and Adrian, R. J., “A Particle Image Velocimetry System for Microfluidics,” Experiments in Fluids, 1998, 25, 316-319. Somashekar, V., Olsen, M. G., and Stremler, M. A., “Flow Structure in a Wide Microchannel with Surface Grooves,” Mechanics Research Communications, 2009, 36, 125-129. Tretinnikovt, O. N., and Ikada, T., “Dynamic Wetting and Contact Angle Hysteresis of Polymer Surfaces Studied with the Modified Wilhelmy Balance Method,” Langmuir, 1994, 10, 1606-1614. Tung, K. Y., Li, C. C., and Yang, J. T., “Mixing and Hydrodynamics Analysis of a Droplet in a Planar Serpentine Micromixer,” Microfluid and Nanofluid, 2009, 7, 545- 557. Van Steijn, V., Kreutzer, M. T., and Kleijn, C. R., “µ-PIV Study of the Formation of Segmented Flowin Microfluidic T-Junctions,” Chemical Engineering Science, 2007, 62, 7505-7514. Wang, E. N., Bucaro, M. A., Taylor, J. A., Kolodner, P., Aizenberg, J., and Krupenkin, T., “Droplet Mixing Using Electrically Tunable Superhydrophobic Nanostructured Surfaces,” Microfluidics and Nanofluidics, 2009, 7, 137-140. Whymana, G., Bormashenko, E., and Steina, T., “The Rigorous Derivation of Young, Cassie-Baxter and Wenzel Equations and the Analysis of the Contact Angle Hyteresis Phenomenon,” Chemical Physics Letters, 2008, 450, 355-359. Wasserman, S. R., Tao, Y. T., and Whitesides, G. M., “Structure and Reactivity of Alkylsiloxane Monolayers Formed by Reaction of Alkyltrichlorosilanes on Silicon Substrates,” Langmuir, 1989, 5, 1074-1087. Yamaguchi, E., Smith, B. J., and Gaver III, D. P., “μ-PIV Measurements of the Ensemble Flow Fields Surrounding a Migrating Semi-Infinite Bubble,” Experiments in Fluids, 2009, 47, 309-320. Yang, J. T., Chen, J. C., Huang, K. J., and Yeh, J. A., “Droplet Manipulation on a Hydrophobic Textured Surface with Roughened Patterns,” Journal of Microelectromechanical Systems, 2006, 15, 697-707. Yasuda, T., Suzuki, K., and Shimoyama, I., “Automatic Transportation of a Droplet on a Wettability Gradient Surface,” the 7th International Conference on Miniat urized Chemical and Biochemical Analysis Systems, 2003, 1129-1132. Yu, X., Wang, Z., Jiang, Y., and Zhang, X., “Surface Gradient Material: from Superhydrophobicity to Superhydrophilicity,” Langmuir, 2006, 22, 4483-4486. Yang, Z. H., Chiu, C. Y., Yang, J. T., and Yeh, J. A., “Investigation and Application of an Ultrahydrophobic Hybrid-Structured Surface with Anti-Sticking Character,” Journal of Micromechanics and Microengineering, 2009, 19, 085022. 邱朝陽,分子自組裝單層膜與奈微複合結構表面之液珠操控,2008,清華大學動力機械工程學系碩士論文。 楊智淵,複合表面之微液珠傳輸晶片設計及其混合機制研究,2009,清華大學動力機械工程學系碩士論文。 楊宗翰,液珠在疏水性奈微表面之能階轉換理論及傳輸現象研究,2009,清華大學動力機械工程學系博士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46355 | - |
dc.description.abstract | 本研究旨在探討奈微複合結構表面上的多組份微液珠碰撞與混合,透過自組裝分子以蒸鍍法使複合表面具有特定梯度,並驅動微液珠從疏水端移動到親水端碰撞同樣體積及組份之靜止液珠,進行混合。本文利用共軛焦顯微鏡及微粒子影像測速儀系統量測液珠內部非穩態三維濃度分布與內部流場型態,並可得知黏滯性的上升以及表面張力的下降將減少表面輪廓震盪時間。從無因次參數Peclect數可知,微液珠結合瞬間內部流場以對流為主導的時間不到300 ms,混合行為主要是以流場靜止後的擴散為主。依據Stokes-Einstein relation以及實驗可知,擴散係數僅與黏滯性有關,與表面張力較無關聯性,故混合指標與黏滯性的高低成反比關係;又因表面張力的下降使液珠結合不完全,也使混合指標隨之下降。
微液珠在碰撞結合瞬間由於表面能差轉換為碰撞時的動能,會有部分能量在內部造成對流質傳以及擴散質傳的現象,剩餘表面能則造成表面輪廓震盪。實驗藉由高速攝影機擷取影像並計算震盪時間,判斷微液珠內部質點混合後的分布機率,並定量出微液珠內部的速度場以及渦度場大小。由無因次參數Webber number,Collision parameter可以看出碰撞行為屬於coalescence,而從Peclect number可知速度場大小與對流行為成正比關係,但在微尺度下微液珠動能極小,對流主導時間短,故對於混合效率並無顯著影響,主要以擴散為主。混合指標的計算為利用雷射激發螢光DNA (FAM and Cy5),再以螢光強度來定量出指標數值,並利用3D重建剖面技術來觀察混合瞬間的染料分布情況,以瞭解兩微液珠間碰撞結合靜止後經由對流所形成的流場趨勢。 本研究結果將於生化領域以及燃油的噴射燃燒方面有所貢獻。在不同組份的微液珠混合分析下,找出提高傳輸速率以及混合效率的最佳比例,也對於爾後進行生物液珠攜帶檢體試劑的混合以及燃油噴射燃燒前時油滴的碰撞行為提供良好的參考依據,並期望液珠混合技術在各領域的發展應用能有更佳的創新與突破。 | zh_TW |
dc.description.abstract | This study investigates the phenomenon of head-on collisions between a moving droplet and stagnation droplet by self-assembled monolayer method. At this research, we utilized experiment analysis to observe the characteristics of flow field during the transport and mixing process by varying the property of viscosity and surface tension. The coalescence dynamic are visualized by a high-speed camera; while the internal flow patterns are resolved by micro-PIV and micro-LIF.
Surface energy transformed to kinematic energy before the coalescence between two droplets, remnant energy will cause oscillation on the contour. According to Webber number, Collision parameter, and Peclect number we found that the behavior of collision mode is permanent coalescence and convective intensity is proportional to velocity field. By scaling law, we know that convection is not the main dominate parameter but diffusion while mixing. For quantify the mixing mechanisms, we used fluorescent dye to define the mixing index that provided the mixing behavior within a droplet after collision. The contribution of this study is the application of textured surface and provided more data of biochemical fluid. Most important of all, we established a way to visualize into the droplet. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:05:05Z (GMT). No. of bitstreams: 1 ntu-99-R97522110-1.pdf: 12023458 bytes, checksum: a94888886fdd13fa2f423d3172ef414d (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 摘要........................................................ i
Abstract................................................. ii 致謝.................................................... iii 目錄..................................................... iv 圖表目錄............................................... viii 符號說明................................................ xiv 第一章 緒 論.............................................. 1 1-1 前言.................................................. 1 1-2 研究動機.............................................. 2 1-3研究目的............................................... 3 第二章 文獻回顧........................................... 5 2-1基本理論............................................... 6 2-1.1 尺寸效應 ........................................ 6 2-1.2 表面能與表面張力................................. 7 2-1.2.1 接觸角....................................... 7 2-1.2.1.1 前進角與後退角........................... 8 2-1.2.1.2 遲滯效應................................. 9 2-2 移動機制.............................................. 9 2-2.1 熱能驅動法....................................... 9 2-2.1 化學能驅動法..................................... 9 2-2.1介電濕潤法....................................... 10 2-2.1 光能驅動法...................................... 11 2-2.2生化自組裝法..................................... 11 2-3 混合分析............................................. 14 2-3.1 流場行為....................................... 14 2-3.2 分析方法.......................................... 15 2-3.2.1 μ-PIV................................. 15 2-3.2.2 介電濕潤法..................................... 19 第三章 研究方法.......................................... 21 3-1理論分析.............................................. 22 3-1.1 表面自由能...................................... 22 3-1.2 遲滯效應........................................ 23 3-1.2.1 接觸模式.................................... 23 3-1.2.2 表面材質.................................... 25 3-2 複合結構表面......................................... 25 3-2.1 自組裝分子選擇.................................. 26 3-2.2 SAM............................................ 26 3-3 混合量測............................................. 28 3-3.1 黏滯力.......................................... 28 3-3.2 表面張力........................................... 29 3-3.3 微粒子影像測速儀................................... 31 3-3.4 實驗儀器........................................... 33 3-3.4.1 光學防震桌..................................... 33 3-3.4.2 高速攝影機..................................... 34 3-3.4.3 共軛焦顯微鏡................................... 35 3-3.4.4 微量注射幫浦及微量注射針頭..................... 36 3-3.4.5針頭支架........................................ 36 3-3.4.6 電子秤........................................... 37 3-3.4.7 黏度計........................................... 37 3-3.4.8 表面張力計....................................... 38 第四章 結果與討論........................................ 39 4-1 微液珠傳輸與震盪分析................................. 39 4-1.1 SAM親疏水表面梯度設計.......................... 39 4-1.2 微液珠碰撞結合前後表面能探討....................... 41 4-1.3 微液珠傳輸速度..................................... 42 4-1.3.1 黏滯性對微液珠傳輸速度的影響..................... 43 4-1.3.2 表面張力對微液珠傳輸速度的影響................... 43 4-1.4 表面輪廓變化分析................................... 44 4-1.4.1 黏滯性對微液珠混合輪廓變化的影響................. 46 4-1.4.2 表面張力對微液珠混合輪廓變化的影響............... 48 4-1.5 黏滯性與表面張力對微液珠震盪時間的影響............. 50 4-2 微液珠碰撞行為探討................................... 53 4-3 微液珠混合機制討論................................... 57 4-3.1 μ-LIF.......................................... 57 4-3.2 微液珠混合瞬間流場分析............................. 57 4-3.2.1 黏滯度對微液珠混合流場影響分析................... 58 4-3.2.1.1 流體黏滯度為1.13 cP時之速度場及渦度場.......... 59 4-3.2.1.2 流體黏滯度為6.05 cP時之速度場及渦度場.......... 65 4-3.2.1.3 流體黏滯度為63.14 cP時之速度場及渦度場......... 71 4-3.2.2 表面張力對微液珠混合流場影響分析....... 79 4-3.2.2.1流體表面張力為73.28 mN/m時之速度場及渦度場...... 80 4-3.2.2.2流體表面張力為46.51 mN/m時之速度場及渦度場...... 86 4-3.2.2.3流體表面張力為38.63 mN/m時之速度場及渦度場...... 92 4-3.3 混合指標 .......................................... 99 4-3.3.1 黏滯力對於混合指標的影響........................ 100 4-3.3.2 表面張力對於混合指標的影響...................... 102 4-3.4 微液珠混合流場主導行為探討........................ 104 4-4 流場混合3D重建.................................... 108 第五章 結論及未來展望................................... 113 5-1 結論................................................ 113 5-2 本文貢獻............................................ 115 5-3 未來展望............................................ 116 第六章 參考文獻......................................... 117 | |
dc.language.iso | zh-TW | |
dc.title | 應用共軛焦顯微術及微PIV分析微液珠於複合表面之碰撞與混合 | zh_TW |
dc.title | Analysis of collision and mixing of droplets on the textured
surface by confocal microscopy and micro-PIV | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 楊鏡堂 | |
dc.contributor.oralexamcommittee | 趙怡欽,謝曉星,賴新一 | |
dc.subject.keyword | 共軛焦顯微鏡,微粒子影像測速儀,液珠,碰撞,混合, | zh_TW |
dc.subject.keyword | confocal microscope,μ-PIV,droplet,collision,mixing, | en |
dc.relation.page | 121 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 11.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。