Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46331
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群
dc.contributor.authorChang-Yen Leeen
dc.contributor.author李長晏zh_TW
dc.date.accessioned2021-06-15T05:03:59Z-
dc.date.available2016-08-19
dc.date.copyright2011-08-19
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citationAndrabi, S.A., Kim, N.S., Yu, S.W., Wang, H., Koh, D.W., Sasaki, M., Klaus, J.A., Otsuka, T., Zhang, Z., Koehler, R.C., et al. (2006). Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103, 18308-18313.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Broverman, S.A., and Meneely, P.M. (1994). Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans. Genetics 136, 119-127.
Cabello, J., Neukomm, L.J., Gunesdogan, U., Burkart, K., Charette, S.J., Lochnit, G., Hengartner, M.O., and Schnabel, R. (2010). The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. PLoS Biol 8, e1000297.
Chan, S.L., Yee, K.S., Tan, K.M., and Yu, V.C. (2000). The Caenorhabditis elegans sex determination protein FEM-1 is a CED-3 substrate that associates with CED-4 and mediates apoptosis in mammalian cells. J Biol Chem 275, 17925-17928.
Chen, F., Hersh, B.M., Conradt, B., Zhou, Z., Riemer, D., Gruenbaum, Y., and Horvitz, H.R. (2000). Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287, 1485-1489.
Conradt, B., and Horvitz, H.R. (1998). The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519-529.
Conradt, B., and Horvitz, H.R. (1999). The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98, 317-327.
Ellis, H.M., and Horvitz, H.R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817-829.
Ellis, R.E., and Horvitz, H.R. (1991). Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112, 591-603.
Ellis, R.E., Jacobson, D.M., and Horvitz, H.R. (1991). Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79-94.
Erwig, L.P., and Henson, P.M. (2008). Clearance of apoptotic cells by phagocytes. Cell Death Differ 15, 243-250.
Gray, P.C., Scott, J.D., and Catterall, W.A. (1998). Regulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins. Curr Opin Neurobiol 8, 330-334.
Gumienny, T.L., Brugnera, E., Tosello-Trampont, A.C., Kinchen, J.M., Haney, L.B., Nishiwaki, K., Walk, S.F., Nemergut, M.E., Macara, I.G., Francis, R., et al. (2001). CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27-41.
Hedgecock, E.M., Sulston, J.E., and Thomson, J.N. (1983). Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277-1279.
Hengartner, M.O., Ellis, R.E., and Horvitz, H.R. (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494-499.
Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2, RESEARCH0002.
Kimble, J., and Hirsh, D. (1979). The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70, 396-417.
Kinchen, J.M., and Ravichandran, K.S. (2007). Journey to the grave: signaling events regulating removal of apoptotic cells. J Cell Sci 120, 2143-2149.
Lettre, G., and Hengartner, M.O. (2006). Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7, 97-108.
Liu, H., Strauss, T.J., Potts, M.B., and Cameron, S. (2006). Direct regulation of egl-1 and of programmed cell death by the Hox protein MAB-5 and by CEH-20, a C. elegans homolog of Pbx1. Development 133, 641-650.
Liu, Q.A., and Hengartner, M.O. (1998). Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell 93, 961-972.
Maurer, C.W., Chiorazzi, M., and Shaham, S. (2007). Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development 134, 1357-1368.
Nakagawa, A., Shi, Y., Kage-Nakadai, E., Mitani, S., and Xue, D. (2010). Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science 328, 327-334.
Nehme, R., Grote, P., Tomasi, T., Loser, S., Holzkamp, H., Schnabel, R., and Conradt, B. (2010). Transcriptional upregulation of both egl-1 BH3-only and ced-3 caspase is required for the death of the male-specific CEM neurons. Cell Death Differ 17, 1266-1276.
Nelson, M.D., Zhou, E., Kiontke, K., Fradin, H., Maldonado, G., Martin, D., Shah, K., and Fitch, D.H. (2011). A bow-tie genetic architecture for morphogenesis suggested by a genome-wide RNAi screen in Caenorhabditis elegans. PLoS Genet 7, e1002010.
Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X., and Xue, D. (2001). Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90-94.
Parrish, J.Z., and Xue, D. (2003). Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol Cell 11, 987-996.
Parrish, J.Z., Yang, C., Shen, B., and Xue, D. (2003). CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J 22, 3451-3460.
Qi, S., Pang, Y., Hu, Q., Liu, Q., Li, H., Zhou, Y., He, T., Liang, Q., Liu, Y., Yuan, X., et al. (2010). Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. Cell 141, 446-457.
Ravichandran, K.S., and Lorenz, U. (2007). Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7, 964-974.
Reddien, P.W., and Horvitz, H.R. (2000). CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2, 131-136.
Simmer, F., Tijsterman, M., Parrish, S., Koushika, S.P., Nonet, M.L., Fire, A., Ahringer, J., and Plasterk, R.H. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12, 1317-1319.
St-Laurent, J.F., Gagnon, S.N., Dequen, F., Hardy, I., and Desnoyers, S. (2007). Altered DNA damage response in Caenorhabditis elegans with impaired poly(ADP-ribose) glycohydrolases genes expression. DNA Repair (Amst) 6, 329-343.
Stanfield, G.M., and Horvitz, H.R. (2000). The ced-8 gene controls the timing of programmed cell deaths in C. elegans. Mol Cell 5, 423-433.
Su, H.P., Nakada-Tsukui, K., Tosello-Trampont, A.C., Li, Y., Bu, G., Henson, P.M., and Ravichandran, K.S. (2002). Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem 277, 11772-11779.
Sulston, J.E., and Horvitz, H.R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56, 110-156.
Taylor, R.C., Brumatti, G., Ito, S., Hengartner, M.O., Derry, W.B., and Martin, S.J. (2007). Establishing a blueprint for CED-3-dependent killing through identification of multiple substrates for this protease. J Biol Chem 282, 15011-15021.
Thellmann, M., Hatzold, J., and Conradt, B. (2003). The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 130, 4057-4071.
Timmons, L., and Fire, A. (1998). Specific interference by ingested dsRNA. Nature 395, 854.
Wang, X., Wang, J., Gengyo-Ando, K., Gu, L., Sun, C.L., Yang, C., Shi, Y., Kobayashi, T., Mitani, S., Xie, X.S., et al. (2007). C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nat Cell Biol 9, 541-549.
Wang, X., Wu, Y.C., Fadok, V.A., Lee, M.C., Gengyo-Ando, K., Cheng, L.C., Ledwich, D., Hsu, P.K., Chen, J.Y., Chou, B.K., et al. (2003). Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302, 1563-1566.
Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H., and Plasterk, R.H. (2001). Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28, 160-164.
Wu, Y.C., and Horvitz, H.R. (1998a). The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951-960.
Wu, Y.C., and Horvitz, H.R. (1998b). C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501-504.
Wu, Y.C., Stanfield, G.M., and Horvitz, H.R. (2000). NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev 14, 536-548.
Wu, Y.C., Tsai, M.C., Cheng, L.C., Chou, C.J., and Weng, N.Y. (2001). C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev Cell 1, 491-502.
Xue, D., and Horvitz, H.R. (1997). Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature 390, 305-308.
Yu, X., Odera, S., Chuang, C.H., Lu, N., and Zhou, Z. (2006). C. elegans Dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Dev Cell 10, 743-757.
Yuan, J.Y., and Horvitz, H.R. (1990). The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 138, 33-41.
Zhou, Z., Caron, E., Hartwieg, E., Hall, A., and Horvitz, H.R. (2001a). The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev Cell 1, 477-489.
Zhou, Z., Hartwieg, E., and Horvitz, H.R. (2001b). CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43-56.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46331-
dc.description.abstractApoptosis is an evolutionarily conserved program of developmental cell death. During the development of the Caenorhabditis elegans hermaphrodite, 131 of the 1030 somatic cells acquire cell death fate and finally undergo apoptosis. The process of programmed cell death can be divided into four distinct steps: decision, execution, engulfment and degradation. The essential four players of the execution step consist of egl-1(BH3-only), ced-9(BCL-2), ced-4(APAF-1) and ced-3(Caspases). It has been shown that transcriptional activation of egl-1 occurs in some destined cell to die. EGL-1 promotes cell death by antagonizing the cell-death inhibitory function of CED-9, thereby allowing pro-apoptotic CED-4 interacts with CED-3 caspase, which in turn results in destruction of the cell. However, how the expression level of egl-1 is regulated and the identities of CED-3 substrates are largely unknown. Previous studies showed that the double mutations of grp-1(The C. elegans ortholog of the cytohesin family of ARF GEFs functions in signaling cells to control asymmetric neuroblast divisions) and pro-apoptotic genes but not single mutations result in abnormal tail morphology. Therefore, we undertook a genetic enhancer screen for novel pro-apoptotic genes in the grp-1 background. Here we report the characterization of two mutants, tp189 and tp71 isolated from the screen. Single nucleotide polymorphism (SNP) mapping was used to position tp189 to the right arm of linkage group IV. We then used deficiency mapping to map tp189 to a 0.5c.m. interval containing approximately 200 genes on 50 fosmids. Finally, we rescued the abnormal tail-defect of tp189 with fosmid WRM064aB04 containing 13 candidate genes including pme-3. tp189 fails to complement a pme-3 allele, suggesting that tp189 may have a mutation in the pme-3 gene. We also used the SNP method to define the other mutation tp71 between pkP2150 and CE2-244 on LG II. However, the tp71 tail-defect phenotype is independent of grp-1. We conclude that tp71 probably functions in hermaphrodite tail tip morphogenesis. In addition to the forward genetic approach, we simultaneously utilized a reverse genetic approach to identify a kinase gene kin-2 that may act together with src kinase, csk-1 to regulate programmed cell death. Our data shown that kin-2, a regulatory subunit of a cAMP-dependent protein kinase may have pro-apoptotic function.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:03:59Z (GMT). No. of bitstreams: 1
ntu-100-R98b43018-1.pdf: 2220957 bytes, checksum: 04ad789e4d0e0085dfd8541b7d5120fc (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書 i
DEDICATION ii
中文摘要 iii
ABSTRACT v
INTRODUCTION 1
MATERIALS AND METHODS 8
C. elegans Genetics 8
Test of dependence on grp-1(gm350) 9
Mapping the mutation in the tp189 recessive mutant and Complementation test 9
RNAi 10
RESULTS 11
Part I 11
tp189 has defects in hermaphrodite tail morphogenesis 11
The tp189 tail-defect phenotype depends on grp-1 12
Genetic mapping and molecular strategy of tp189 12
tp189 fails to complement pme-3 13
tp189 does not have extra touch neurons 14
Part II 15
tp71 also has defects in hermaphrodite tail morphogenesis 15
The tp71 tail-defect phenotype is independent of grp-1 15
Genetic mapping of tp71 16
The RNAi treatment of candidate genes in the region between pkP2150 and CE2-244 16
Part III 18
Mutation in kin-2 enhance extra cell number in weak ced-3 mutant 18
Expression of kin-2 in touch neurons kills touch neurons 18
DISCUSSION 20
REFERENCES 23
TABLES and FIGURES 31
Table 1. tp189 partially fails to complement pme-3(gk120). 31
Table 2. tp189 does not have extra touch neurons 32
Table 3. Phenotype of tp71 is independent of grp-1. 33
Table 4. RNAi of a few gene in the mapping region caused abnormal tail morphology. 34
Table 5. Mutation in kin-2 enhances extra cell number in weak ced-3 mutant. 35
Table 6. Expression of kin-2 in PLMs kills PLMs. 36
Figure 1. Interactions between grp-1 and ced-3 result in extra hypodermal cell(s). 37
Figure 2. grp-1 (gm350); tp189 mutants have tail morphological abnormalities. 38
Figure 3. grp-1 (gm350); tp189 results in morphologic defects in hyp10 or hyp11 of tail tip. 39
Figure 4. grp-1 (gm350); tp189 results in abnormal cellular arrangement of hyp9 and hyp10 in tail tip. 40
Figure 5. The tp189 tail-defect phenotype is dependent on grp-1(gm350). 41
Figure 6. Mapping interval can be defined on LG IV between 0.07 and 6.72 c.m.. 42
Figure 7. eDf18 fails to complement grp-1 (gm350); tp189. eDf18 stands for a deletion region of LG IV:3.64-4.27 c.m.. 43
Figure 8. grp-1 (gm350); tp189 can be rescue by fosmid WRM064aB04 and pme-3 gDNA. 44
Figure 9. The phenotype of grp-1(gm350); tp189 is similar to grp-1(gm350); pme-3(gk120). 45
Figure 10. tp71 mutants have tail morphological abnormalities. 46
Figure 11. tp71 results in morphologic defects in hyp9 and hyp10 of tail tip. 47
Figure 12. tp71 results in abnormal cellular arrangement of hyp9 and hyp10 in tail tip. 48
Figure 13. Mapping interval can be defined on LG II between -1.79 and 3.34 c.m.. 49
Figure 14. Mapping interval can be defined on LG II between 0.50 and 0.506 c.m.. 50
dc.language.isoen
dc.subject聚(腺zh_TW
dc.subject鳥嘌呤核zh_TW
dc.subject細胞凋亡zh_TW
dc.subject線蟲zh_TW
dc.subjectexecutionen
dc.subjectkin-2en
dc.subjectpme-3en
dc.subjectC.elegansen
dc.subjectapoptosisen
dc.subjectgrp-1en
dc.title描繪在計畫性細胞死亡和尾部型態中有缺陷線蟲突變株的特性zh_TW
dc.titleCharacterization of C. elegans mutants defective in apoptosis and tail morphogenesisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李士傑,黃偉邦
dc.subject.keyword線蟲,細胞凋亡,鳥嘌呤核,聚(腺,zh_TW
dc.subject.keywordC.elegans,apoptosis,execution,grp-1,pme-3,kin-2,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2011-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved