Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46330Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張世宗 | |
| dc.contributor.author | Nien-Ming Chen | en |
| dc.contributor.author | 陳年明 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:03:56Z | - |
| dc.date.available | 2014-09-18 | |
| dc.date.copyright | 2011-09-18 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-23 | |
| dc.identifier.citation | 蔡佳芸 (2009) 胞外 SUMO 化系統之建立與多 SUMO 化機制之探討,碩士論文,國立臺灣大學微生物與生化學研究所
Aguilar RC, Wendland B (2003) Ubiquitin: not just for proteasomes anymore. Curr Opin Cell Biol 15: 184-190 Ayaydin F, Dasso M (2004) Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol Biol Cell 15: 5208-5218 Bailey D, O'Hare P (2004) Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J Biol Chem 279: 692-703 Bekes M, Prudden J, Srikumar T, Raught B, Boddy MN, Salvesen GS (2011) The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. J Biol Chem 286: 10238-10247 Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108: 345-356 Blomster HA, Hietakangas V, Wu J, Kouvonen P, Hautaniemi S, Sistonen L (2009) Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites. Mol Cell Proteomics 8: 1382-1390 Blomster HA, Imanishi SY, Siimes J, Kastu J, Morrice NA, Eriksson JE, Sistonen L (2010) In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J Biol Chem 285: 19324-19329 Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278: 44113-44120 Capili AD, Lima CD (2007) Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol 369: 608-618 Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20: 2067-2081 Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131: 584-595 Chupreta S, Holmstrom S, Subramanian L, Iniguez-Lluhi JA (2005) A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol Cell Biol 25: 4272-4282 Denuc A, Marfany G (2010) SUMO and ubiquitin paths converge. Biochem Soc Trans 38: 34-39 Dohmen RJ (2004) SUMO protein modification. Biochim Biophys Acta 1695: 113-131 Drag M, Salvesen GS (2008) DeSUMOylating enzymes--SENPs. IUBMB Life 60: 734-742 Figueroa-Romero C, Iniguez-Lluhi JA, Stadler J, Chang CR, Arnoult D, Keller PJ, Hong Y, Blackstone C, Feldman EL (2009) SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J 23: 3917-3927 Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947-956 Gong L, Yeh ET (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 281: 15869-15877 Groettrup M, Pelzer C, Schmidtke G, Hofmann K (2008) Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem Sci 33: 230-237 Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36: 837-841 Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280: 4102-4110 Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425-479 Ho CW, Chen HT, Hwang J (2011) UBC9 Autosumoylation Negatively Regulates Sumoylation of Septins in Saccharomyces cerevisiae. J Biol Chem 286: 21826-21834 Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7: 215-223 Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30: 405-439 Hochstrasser M (2007) Ubiquitin ligation without a ligase. Dev Cell 13: 4-6 Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458: 422-429 Huang BB, Xiu B, Lu HN, Qin W, Liang AB (2010) [Effect of hypoxia on HIF-1alpha and its sumoylation in Jurkat cells.]. Zhonghua Xue Ye Xue Za Zhi 31: 394-397 Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep 9: 536-542 Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272: 26799-26802 Kamitani T, Kito K, Nguyen HP, Wada H, Fukuda-Kamitani T, Yeh ET (1998) Identification of three major sentrinization sites in PML. J Biol Chem 273: 26675-26682 Kim JH, Baek SH (2009) Emerging roles of desumoylating enzymes. Biochim Biophys Acta 1792: 155-162 Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A (2008) Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31: 371-382 Knipscheer P, van Dijk WJ, Olsen JV, Mann M, Sixma TK (2007) Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J 26: 2797-2807 Kolli N, Mikolajczyk J, Drag M, Mukhopadhyay D, Moffatt N, Dasso M, Salvesen G, Wilkinson KD (2010) Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochem J 430: 335-344 Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de The H (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10: 547-555 Li SJ, Hochstrasser M (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20: 2367-2377 Li SJ, Hochstrasser M (2003) The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol 160: 1069-1081 Lima CD, Reverter D (2008) Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. J Biol Chem 283: 32045-32055 Liu Q, Jin C, Liao X, Shen Z, Chen DJ, Chen Y (1999) The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). J Biol Chem 274: 16979-16987 Martin S, Wilkinson KA, Nishimune A, Henley JM (2007) Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 8: 948-959 Matafora V, D'Amato A, Mori S, Blasi F, Bachi A (2009) Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics 8: 2243-2255 Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH, Hay RT, Lamond AI, Mann M, Vertegaal AC (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7: 132-144 Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6: 793-807 Meulmeester E, Melchior F (2008) Cell biology: SUMO. Nature 452: 709-711 Mikolajczyk J, Drag M, Bekes M, Cao JT, Ronai Z, Salvesen GS (2007) Small ubiquitin-related modifier (SUMO)-specific proteases: profiling the specificities and activities of human SENPs. J Biol Chem 282: 26217-26224 Millard SM, Wood SA (2006) Riding the DUBway: regulation of protein trafficking by deubiquitylating enzymes. J Cell Biol 173: 463-468 Miteva M, Keusekotten K, Hofmann K, Praefcke GJ, Dohmen RJ (2010) Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Subcell Biochem 54: 195-214 Mukhopadhyay D, Ayaydin F, Kolli N, Tan SH, Anan T, Kametaka A, Azuma Y, Wilkinson KD, Dasso M (2006) SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. J Cell Biol 174: 939-949 Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32: 286-295 Muller S, Hoege C, Pyrowolakis G, Jentsch S (2001) SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol 2: 202-210 Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun 254: 693-698 Pedrioli PG, Raught B, Zhang XD, Rogers R, Aitchison J, Matunis M, Aebersold R (2006) Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat Methods 3: 533-539 Pichler A (2008) Analysis of sumoylation. Methods Mol Biol 446: 131-138 Pickart CM (2000) Ubiquitin in chains. Trends Biochem Sci 25: 544-548 Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8: 610-616 Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26: 4089-4101 Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276: 12654-12659 Sacher M, Pfander B, Jentsch S (2005) Identification of SUMO-protein conjugates. Methods Enzymol 399: 392-404 Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252-6258 Salomons FA, Acs K, Dantuma NP (2010) Illuminating the ubiquitin/proteasome system. Exp Cell Res 316: 1289-1295 Sampson DA, Wang M, Matunis MJ (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276: 21664-21669 Schwartz DC, Felberbaum R, Hochstrasser M (2007) The Ulp2 SUMO protease is required for cell division following termination of the DNA damage checkpoint. Mol Cell Biol 27: 6948-6961 Sekiyama N, Arita K, Ikeda Y, Hashiguchi K, Ariyoshi M, Tochio H, Saitoh H, Shirakawa M (2010) Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Proteins 78: 1491-1502 Shen LN, Geoffroy MC, Jaffray EG, Hay RT (2009) Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Biochem J 421: 223-230 Sigismund S, Polo S, Di Fiore PP (2004) Signaling through monoubiquitination. Curr Top Microbiol Immunol 286: 149-185 Skilton A, Ho JC, Mercer B, Outwin E, Watts FZ (2009) SUMO chain formation is required for response to replication arrest in S. pombe. PLoS One 4: e6750 Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10: 538-546 Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276: 35368-35374 Uchimura Y, Nakamura M, Sugasawa K, Nakao M, Saitoh H (2004) Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem 331: 204-206 Ulrich HD (2008) The fast-growing business of SUMO chains. Mol Cell 32: 301-305 van Wijk SJ, Timmers HT (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24: 981-993 Vertegaal AC (2010) SUMO chains: polymeric signals. Biochem Soc Trans 38: 46-49 Watts FZ, Skilton A, Ho JC, Boyd LK, Trickey MA, Gardner L, Ogi FX, Outwin EA (2007) The role of Schizosaccharomyces pombe SUMO ligases in genome stability. Biochem Soc Trans 35: 1379-1384 Weisshaar SR, Keusekotten K, Krause A, Horst C, Springer HM, Gottsche K, Dohmen RJ, Praefcke GJ (2008) Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett 582: 3174-3178 Wilkinson KA, Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428: 133-145 Wilson VG, Heaton PR (2008) Ubiquitin proteolytic system: focus on SUMO. Expert Rev Proteomics 5: 121-135 Xu J, He Y, Qiang B, Yuan J, Peng X, Pan XM (2008) A novel method for high accuracy sumoylation site prediction from protein sequences. BMC Bioinformatics 9: 8 Xu Z, Au SW (2005) Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. Biochem J 386: 325-330 Yang M, Hsu CT, Ting CY, Liu LF, Hwang J (2006) Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem 281: 8264-8274 Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10: 755-764 Yeh ET (2009) SUMOylation and De-SUMOylation: wrestling with life's processes. J Biol Chem 284: 8223-8227 Yun C, Wang Y, Mukhopadhyay D, Backlund P, Kolli N, Yergey A, Wilkinson KD, Dasso M (2008) Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. J Cell Biol 183: 589-595 Zhao Y, Kwon SW, Anselmo A, Kaur K, White MA (2004) Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J Biol Chem 279: 20999-21002 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46330 | - |
| dc.description.abstract | 透過SUMO化修飾目標蛋白質或以 SUMO 專一性蛋白酶 (SUMO/Sentrin-specific proteases, SENPs) 進行其可逆性移除乃是細胞內重要的蛋白質修飾作用。與泛素化修飾相同,SUMO 化修飾亦調控了細胞中許多重要功能,包括影響蛋白質間之交互作用與穩定性等。已知泛素可透過不同位置形成聚合長鏈,且其具有不同的生理意義,而 SUMO 化修飾雖被證實亦可形成多 SUMO 長鏈,然其生理角色與形成機制仍不十分清楚。
本論文透過將 SUMO 化修飾所需之各酵素轉形至大腸桿菌中,建立一不受 SENPs 所調節的 SUMO 化修飾反應系統,進行多 SUMO 化修飾的觀察與探討。結果顯示,在所建立的系統中,被認為無法形成聚合長鏈的 SUMO1 可透過非保守性 SUMO 化修飾作用於特定離胺酸形成聚合長鏈,且其生成的位置偏好發生於結構鬆散的 N 端,顯示空間上的障礙乃是影響多 SUMO 長鏈生成的重要因素。為探討各 SENP 對於多 SUMO 長鏈降解之影響,本論文以細胞外 SENP 活性分析發現,除 SENP5 外,各 SENP 其 C 端蛋白酶活性區皆可水解多 SUMO1 及多 SUMO2 長鏈,而其中 SENP1、SENP2 水解兩種 SUMO 長鏈之活性並無顯著差異。由於先前研究多認為 SENP1 及 SENP2 不具有降解多 SUMO 長鏈的能力,本論文所得結果顯示降解多 SUMO 長鏈的活性廣泛存在於大多數 SENP 保守性的活性區中。此外,本研究亦發現 SENP6、SENP7 蛋白酶活性區水解多 SUMO2 長鏈的活性較多 SUMO1 為佳,顯示其活性區與受質專一性有關。 | zh_TW |
| dc.description.abstract | The conjugation of SUMO moiety by SUMO conjugation system and the removal of the moiety by SENPs are important aspects of protein modification in cells. Analogous to ubiquitination, sumoylation regulates many physiological functions of proteins. It has been demonstrated that ubiquitin can form various polymeric chains via specific lysines to execute distinct functions. Although certain types of polymeric SUMO chains have been described, their roles in biological processes and the mechanism of formation remain unclear.
In this study, I transformed the enzymes required for sumoylation into Escherichia coli BL21 (DE3) to establish a sumoylation system, which lacks SENP-mediated desumoylation for analyzing the formation of polymeric SUMO chains. The results suggest that SUMO1, which has been considered unable to form polymers, is able to form polymeric chains mainly through self-conjugation at specific lysine residues nearby the flexible N terminus, indicating that the steric hindrance is a key factor modulating polySUMO chains formation. To investigate the character of polySUMO degradation catalyzed by SENPs, I examined the degradation of polySUMO chains by conducting the in vitro SENP activity analysis. The data showed that the catalytic domains of all SENPs, except SENP5, are able to deconjugate both polySUMO1 chains and polySUMO2 chains. Moreover, the catalytic core of SENP1 and SENP2 present similar preference toward polySUMO1 and polySUMO2 chains. I also found that the catalytic cores of SENP6 and SENP7 exhibit an exquisite substrate selectivity that polySUMO2 chains are deconjugated more efficiently than polySUMO1 chains. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:03:56Z (GMT). No. of bitstreams: 1 ntu-100-R98b47204-1.pdf: 17050382 bytes, checksum: 7e77cc769daa62a00c1155d6030fbf41 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 縮寫表…… iii 第一章 緒論 1 1.1 類泛素蛋白質 1 1.2 SUMO 化作用 1 1.2.1 SUMO 及其修飾機制 1 1.2.2 多 SUMO 聚合長鏈 3 1.2.3 SUMO 化修飾之生理作用 4 1.3 SUMO專一性蛋白酶 (SENPs) 6 1.3.1 SENPs 分類 6 1.3.2 SENPs 催化活性與作用機制 7 1.3.3 SENPs 之生理作用 7 1.4 研究動機與方向 8 第二章 材料與方法 10 2.1 質體建構 10 2.1.1 野生型 SUMO1 及其單一離胺酸突變株之重組質體建構 10 2.1.2 野生型 SUMO1 及 SUMO2 聚合長鏈表現質體 10 2.1.3 螢光蛋白標誌之多 SUMO1 長鏈表現質體 11 2.1.4 SUMO 專一性蛋白酶表現質體 11 2.2 大腸桿菌 SUMO 化修飾系統 12 2.3 重組蛋白質表現與純化 12 2.3.1 野生型 SUMO1 及其突變株聚合長鏈的表現與純化 12 2.3.2 螢光蛋白標誌之SUMO1表現與純化 13 2.3.3 螢光蛋白標誌之多 SUMO1 長鏈的表現與純化 13 2.3.4 各 SENP 之表現與純化 13 2.4 SENP之活性分析 14 2.5 以螢光共振能量轉移分析 SENP 水解多 SUMO1 長鏈之活性 14 第三章 結果 16 3.1各離胺酸對於多 SUMO1 長鏈生成之影響 16 3.1.1 以 pQE30-His-SUMO1 為表現質體 16 3.1.2 以 pET30a-His-SUMO1 為表現質體 16 3.1.3 以 pET30a-HA-SUMO1 為表現質體 17 3.2各 SENP 對於多 SUMO 長鏈之水解活性分析 18 3.2.1 SENP3 重組質體之建構 18 3.2.2 多 SUMO1 及多SUMO2 長鏈及各 SENP 之表現與純化 19 3.2.3 SENPs 對於多 SUMO長鏈之水解活性分析 19 3.3 SENP1 對螢光蛋白標誌之多 SUMO1 長鏈水解活性 19 3.3.1 螢光蛋白標誌之多 SUMO1 長鏈的純化 19 3.3.2 以免疫染色法檢視 SENP1 水解受質之活性 20 3.3.3 以螢光共振能量轉移作為指標分析 SENP1 水解受質之活性 20 第四章 討論 22 4.1多 SUMO1 長鏈的生成屬於非保守性 SUMO 化修飾 22 4.2多 SUMO1 長鏈的生成與特定胺基酸有關 23 4.3 SUMO 化修飾系統亦為 SUMO 化修飾調控之標的 24 4.4除 SENP5, 各SENP 活性區皆可降解多 SUMO 長鏈 24 4.5 SENP1 及 SENP2 之 N 端會影響其受質辨識及 chain editing 的能力 25 4.6 SENP 6與 SENP7 蛋白酶活性區會影響其受質專一性 25 4.7無法順利透過螢光共振能量轉移分析 SENPs 之活性 26 第五章 未來展望 28 參考文獻 29 表與圖……………………………………………………………………………………………………………………….35 附錄….……………………………………………………………………………………………………………………....56 | |
| dc.language.iso | zh-TW | |
| dc.subject | SUMO專一性蛋白酶 | zh_TW |
| dc.subject | 聚合長鏈 | zh_TW |
| dc.subject | SUMO化修飾 | zh_TW |
| dc.subject | Polymeric chains | en |
| dc.subject | SUMO | en |
| dc.subject | SENPs | en |
| dc.title | SUMO1自我長鏈聚合之研究與SENPs降解多SUMO長鏈
之性質分析 | zh_TW |
| dc.title | Study of the Self-polymerization of SUMO1 and Characterization of the PolySUMO Chain Degradation Catalyzed by SENPs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊榮輝,陳威戎,張麗冠,鄭貽生 | |
| dc.subject.keyword | SUMO化修飾,SUMO專一性蛋白酶,聚合長鏈, | zh_TW |
| dc.subject.keyword | SUMO,SENPs,Polymeric chains, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-23 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| Appears in Collections: | 生化科技學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 16.65 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
