請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46328完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 金洛仁(Laurent Zimmerli) | |
| dc.contributor.author | Wei-Yen Chen | en |
| dc.contributor.author | 陳威諺 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:03:48Z | - |
| dc.date.available | 2012-08-31 | |
| dc.date.copyright | 2010-08-31 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657.
Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983. Bostock, R.M. (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43, 545-580. Bouwmeester, K., and Govers, F. (2009). Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot. Carviel, J.L., Al-Daoud, F., Neumann, M., Mohammad, A., Provart, N.J., Moeder, W., Yoshioka, K., and Cameron, R.K. (2009). Forward and reverse genetics to identify genes involved in the age-related resistance response in Arabidopsis thaliana. Mol Plant Pathol 10, 621-634. Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma, B., Wang, Y., Zhao, X., Li, S., and Zhu, L. (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46, 794-804. Clarke, J.D., Liu, Y., Klessig, D.F., and Dong, X. (1998). Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. Plant Cell 10, 557-569. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743. Conrath, U., Pieterse, C.M., and Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends Plant Sci 7, 210-216. Conrath, U., Beckers, G.J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M.A., Pieterse, C.M., Poinssot, B., Pozo, M.J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., and Mauch-Mani, B. (2006). Priming: getting ready for battle. Mol Plant Microbe Interact 19, 1062-1071. Cui, J., Bahrami, A.K., Pringle, E.G., Hernandez-Guzman, G., Bender, C.L., Pierce, N.E., and Ausubel, F.M. (2005). Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci U S A 102, 1791-1796. Develey-Riviere, M.P., and Galiana, E. (2007). Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol 175, 405-416. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43, 205-227. Gomez-Gomez, L. (2004). Plant perception systems for pathogen recognition and defence. Mol Immunol 41, 1055-1062. Gomez-Gomez, L., and Boller, T. (2002). Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7, 251-256. Gouget, A., Senchou, V., Govers, F., Sanson, A., Barre, A., Rouge, P., Pont-Lezica, R., and Canut, H. (2006). Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140, 81-90. Govrin, E.M., and Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10, 751-757. Greenberg, J.T., Silverman, F.P., and Liang, H. (2000). Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics 156, 341-350. Gupta, V., Willits, M.G., and Glazebrook, J. (2000). Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol Plant Microbe Interact 13, 503-511. Hansen, B.G., and Halkier, B.A. (2005). New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana. Planta 221, 603-606. Heidel, A.J., Clarke, J.D., Antonovics, J., and Dong, X. (2004). Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 168, 2197-2206. Heil, M., and Baldwin, I.T. (2002). Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7, 61-67. Hemsley, P.A., Kemp, A.C., and Grierson, C.S. (2005). The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17, 2554-2563. Herve, C., Serres, J., Dabos, P., Canut, H., Barre, A., Rouge, P., and Lescure, B. (1999). Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol Biol 39, 671-682. Jakab, G., Ton, J., Flors, V., Zimmerli, L., Metraux, J.P., and Mauch-Mani, B. (2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139, 267-274. Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J., and Greenberg, J.T. (2009). Priming in systemic plant immunity. Science 324, 89-91. Kunkel, B.N., and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5, 325-331. Kus, J.V., Zaton, K., Sarkar, R., and Cameron, R.K. (2002). Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 14, 479-490. Leon-Reyes, A., Spoel, S.H., De Lange, E.S., Abe, H., Kobayashi, M., Tsuda, S., Millenaar, F.F., Welschen, R.A., Ritsema, T., and Pieterse, C.M. (2009). Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149, 1797-1809. Mengiste, T., Chen, X., Salmeron, J., and Dietrich, R. (2003). The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15, 2551-2565. Navarro-Gochicoa, M.T., Camut, S., Timmers, A.C., Niebel, A., Herve, C., Boutet, E., Bono, J.J., Imberty, A., and Cullimore, J.V. (2003). Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Plant Physiol 133, 1893-1910. Parker, J.E. (2003). Plant recognition of microbial patterns. Trends Plant Sci 8, 245-247. Penninckx, I.A., Thomma, B.P., Buchala, A., Metraux, J.P., and Broekaert, W.F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103-2113. Petersen, S.V., Thiel, S., and Jensenius, J.C. (2001). The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol 38, 133-149. Preiter, K., Brooks, D.M., Penaloza-Vazquez, A., Sreedharan, A., Bender, C.L., and Kunkel, B.N. (2005). Novel virulence gene of Pseudomonas syringae pv. tomato strain DC3000. J Bacteriol 187, 7805-7814. Ren, D., Liu, Y., Yang, K.Y., Han, L., Mao, G., Glazebrook, J., and Zhang, S. (2008). A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 105, 5638-5643. Reymond, P., and Farmer, E.E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1, 404-411. Sels, J., Mathys, J., De Coninck, B.M., Cammue, B.P., and De Bolle, M.F. (2008). Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46, 941-950. Shiu, S.H., Karlowski, W.M., Pan, R., Tzeng, Y.H., Mayer, K.F., and Li, W.H. (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16, 1220-1234. Spoel, S.H., and Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3, 348-351. Spoel, S.H., Koornneef, A., Claessens, S.M., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X., and Pieterse, C.M. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15, 760-770. Thomma, B.P., Penninckx, I.A., Broekaert, W.F., and Cammue, B.P. (2001). The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13, 63-68. Thomma, B.P., Eggermont, K., Penninckx, I.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P., and Broekaert, W.F. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95, 15107-15111. Thordal-Christensen, H. (2003). Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6, 351-357. Turner, J.G., Ellis, C., and Devoto, A. (2002). The jasmonate signal pathway. Plant Cell 14 Suppl, S153-164. Uppalapati, S.R., Ishiga, Y., Wangdi, T., Kunkel, B.N., Anand, A., Mysore, K.S., and Bender, C.L. (2007). The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 20, 955-965. van Hulten, M., Pelser, M., van Loon, L.C., Pieterse, C.M., and Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103, 5602-5607. Veronese, P., Nakagami, H., Bluhm, B., Abuqamar, S., Chen, X., Salmeron, J., Dietrich, R.A., Hirt, H., and Mengiste, T. (2006). The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18, 257-273. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., and Durner, J. (2004). Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A 101, 15811-15816. Zeier, J., Pink, B., Mueller, M.J., and Berger, S. (2004). Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta 219, 673-683. Zhang, S., and Klessig, D.F. (2001). MAPK cascades in plant defense signaling. Trends Plant Sci 6, 520-527. Zimmerli, L., Jakab, G., Metraux, J.P., and Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proc Natl Acad Sci U S A 97, 12920-12925. Zimmerli, L., Hou, B.H., Tsai, C.H., Jakab, G., Mauch-Mani, B., and Somerville, S. (2008). The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53, 144-156. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46328 | - |
| dc.description.abstract | β-aminobutyric acid (BABA) 是一種人工合成的氨基酸。已知經過BABA處理的植物在面對生物或非生物性逆境時可以展現較快且較強的防禦能力,但目前仍未完全明瞭BABA在植物中的的作用機制。 本論文研究篩檢到一突變種,其對於BABA的反應異於野生種,BABA在此突變種失去了提供保護的效果, 表示此突變的基因可能參與BABA在植物中的訊息傳導路徑。此突變種是利用農桿菌的T-DNA插入阿拉伯芥染色體方式得到的,被插入而破壞的是一屬於凝集素a1家族的基因LecRK- a1. LecRK- a1的突變種對於活體寄生型病原菌(biotrophic)和死體寄生型病原菌(necrotrophic)展現相異的抵抗力。此突變種對於 Botrytis cinerea的抵抗力降低,而對於 Pseudomonas syringae pv. tomato DC3000的抵抗力提高(根據CFU和PR1基因的表現而非感染症狀)。這些性狀可能是因為在受不同病原菌感染後, 突變種分別有較低的PDF1.2基因表現和較高的PR-1基因表現所導致。 另外在沒有任何處理的狀況下, 此突變種已展現較野生種高的 PR-1, PR-2, PR-5 基因表現, 表示其體中的SA防禦機制已處在活化的狀態;另一方面,突變種中的 PDF1.2 ,VSP1, LOX2基因表現較低, 表示其JA/ET防禦機制受到抑制.另外在SA防禦機制方面, 野生種中的 PR-1基因表現會隨著植物的成長而昇高, 不過會於植株約四週大時停止上昇, 但是在突變種中的PR-1基因表現即使植株超過六週大仍會持續上昇。 此突變基因之互補試驗的資料顯示是此基因突變造成突變種的高 PR-1基因表現以及對Botrytis cinerea的低抵抗力。 | zh_TW |
| dc.description.abstract | β-aminobutyric acid (BABA) is an artificial, non-protein amino acid. BABA-treated plants mount a faster and stronger resistance against biotic and abiotic stress. However, the mode of action of BABA is poorly understood. Through a reverse genetic approach, we discovered the lecrk-a1 mutant that showed an altered response to BABA, including loss of BABA-mediated protection, indicating that this gene could be involved in BABA signalling pathway. This knockout lecrk-a1 mutant possesses a T-DNA insertion in the kinase domain of the lectin receptor-like kinase a1 gene (LecRK-a1).
Inactivation of LecRK-a1 causes distinct responses to biotrophic and necrotrophic pathogens. lecrk-a1 was more susceptible to Botrytis cinerea and more resistant to Pseudomonas syringae pv. tomato DC3000, possibly due to lower PDF1.2 and higher PR-1 expression after pathogen inoculation, respectively. Without any treatment, lecrk-a1 demonstrated high SA-related PR-1, PR-2 and PR-5 gene expressions. On the other hand, expression of PDF1.2 gene and other secondary JA/ET marker genes was low in lecrk-a1. Together, it suggests that the SA-defense response is constitutively activated and the JA/ET signaling is reduced in the lecrk-a1. The PR-1 expression strongly increases as the lecrk-a1 ages, while in wild type Col-0, increase in PR-1 expression is arrested at 4 weeks after germination. LecRK-a1 might be involved in age-related resistance. Introducing a wild type copy of the LecRK-a1 coding sequence in the lecrk-a1 background restored a normal PR-1 gene expression and the susceptibility to B. cinerea, confirming that the observed phenotypes are caused by a mutation in LecRK-a1. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:03:48Z (GMT). No. of bitstreams: 1 ntu-99-R96b42011-1.pdf: 2513519 bytes, checksum: 0a9c2498c9c9df08bda23f86896431da (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 ii
中文摘要 v Abstract vi Table of contents viii Abbreviations xi Introduction 1 Materials and methods 6 1. Plant and pathogen materials, growth conditions 6 2. BABA treatment 6 3. Pst DC3000 inoculation 6 4. colony forming unit assay 7 5. B.c inoculation 8 6. RNA extraction and cDNA synthesis 9 7. Real-time PCR 9 8. Backcross 10 9. Complementation of the lecrk-a1-1 mutant 11 10. Plant transformation and transgenic lines selection 11 11. Semi-quantitative RT-PCR 12 Results 13 The structure of Lectin receptor-like kinase A1 and the identification of LecRK-A1 mutants. 13 The response of lecrk-a1-1 to Pst DC3000 inoculation after BABA treatment. 16 lecrk-a1-1 demonstrates constitutively high SA-related genes expression. 19 PR-1 gene expression in lecrk-a1-1 is age-dependent regulated. 20 lecrk-a1-1 shows constitutive low JA/ET-related genes expression. 21 lecrk-a1 is more susceptible to B. cinerea, and shows lower PDF1.2 up-regulation after B. cinerea inoculation. 23 Complementation tests 27 Discussion 30 lecrk-a1-1 has constitutively activated SA pathway, however, close to normal resistance to Pst DC3000. 30 Is the uncoupling of the symptoms and CFU/ PR-1 gene expression in BABA-treated lecrk-a1-1 due to spontaneous cell death? 30 The pattern of expression of defense marker genes in lecrk-a1-1 corresponds to the antagonistical crosstalk between SA and JA/ET pathways. 32 The accumulation of PR-1 transcripts in lecrk-a1-1 in an age-dependent manner might be linked to age-related-resistance. 32 The higher susceptibility of lecrk-a1 to B. cinerea infection could be due to a defective JA/ET pathway. 33 Over-expression of the LecRK-A1 cDNA in lecrk-a1 background rescued the B. cinerea infection response and high PR-1 gene expression. 34 Conclusion and future perspectives 36 Appendix 38 References 40 | |
| dc.language.iso | en | |
| dc.subject | Botrytis cinerea | zh_TW |
| dc.subject | SA | zh_TW |
| dc.subject | 凝集素 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | JA/ET | zh_TW |
| dc.subject | Pseudomonas syringae pv. tomato DC3000 | zh_TW |
| dc.subject | 抗病反應 | zh_TW |
| dc.subject | Botrytis cinerea | en |
| dc.subject | Arabidopsis thaliana | en |
| dc.subject | lectin receptor-like kinase | en |
| dc.subject | pathogen resistance | en |
| dc.subject | SA | en |
| dc.subject | JA/ET | en |
| dc.subject | Pseudomonas syringae pv. tomato DC3000 | en |
| dc.title | 凝集素LecRK-a1在植物抗病機制中的功能性分析 | zh_TW |
| dc.title | Functional analysis of Lecrk-a1, a lectin receptor kinase involved in pathogen resistance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳昭瑩,吳克強 | |
| dc.subject.keyword | 阿拉伯芥,凝集素,抗病反應,SA,JA/ET,Pseudomonas syringae pv. tomato DC3000,Botrytis cinerea, | zh_TW |
| dc.subject.keyword | Arabidopsis thaliana,lectin receptor-like kinase,pathogen resistance,SA,JA/ET,Pseudomonas syringae pv. tomato DC3000,Botrytis cinerea, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
