請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46324完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫(Jeffery Ward) | |
| dc.contributor.author | Kai-Ti Chu | en |
| dc.contributor.author | 朱愷悌 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:03:37Z | - |
| dc.date.available | 2010-07-28 | |
| dc.date.copyright | 2010-07-28 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | References
[1] Wright, R.O. and N.J.Elizabeth, 'Fractional apparatus'. 1949. US Patent, 2,471,134 [2] Triantafyllou, C. and R. Smith, 'The Design and Optimization of fully thermally coupled distillation-columns'. Chem. Eng. Res. Des., 1992. 70: p. 118-132. [3] Amminudin, K.A., R. Smith, D.Y.C. Thong, and G.P. Towler, 'Design and optimization of fully thermally coupled distillation columns part 1: Preliminary design and optimization methodology'. Chem. Eng. Res. Des., 2001. 79: p. 701-715. [4] Kim, Y.H., 'Structural design and operation of a fully thermally coupled distillation column'. Chem. Eng. J., 2002. 85: p. 289-301. [5] Lek, C.M., G.P. Rangaiah, and K. Hidajat, 'Distillation: Revisiting some rules of thumb'. Chen. Eng., 2004. 111: p. 50-55. [6] Muralikrishna, K., K.P. Madhavan, and S.S. Shah, 'Development of dividing wall distillation column design space for a specified separation'. Chem. Eng. Res. Des., 2002. 80: p. 155-166. [7] Sotudeh, N. and B.H. Shahraki, 'A method for the design of divided wall columns'. Chem. Eng. Technol., 2007. 30: p. 1284-1291. [8] Ram´ırez-Corona, N., Jim´enez-Guti´errez, A., Castro-Ag¨uero, A., Rico-Ram´ırez, V., 'Optimum Design of Petluk and Divided-wall distillation systems using a shortcut model'. Chem. Eng. Res. Des. , 2008. doi:10.1016/j.cherd.2010.02.020 [9] Agrawal, R. and Z.T. Fidkowski, 'Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations?'. Ind. Eng. Chem. Res., 1998. 37: p. 3444-3454. [10] Rev, E., M. Emtir, Z. Szitkai, P. Mizsey, and Z. Fonyo, 'Energy savings of integrated and coupled distillation systems'. Comput. Chem. Eng., 2001. 25: p. 119-140. [11] Errico, M., G. Tola, B.G. Rong, D. Demurtas, and I. Turunen, 'Energy saving and capital cost evaluation in distillation column sequences with a divided wall column'. Chem. Eng. Res. Des, 2009. 87: p. 1649-1657. [12] Wolff, E.A. and S. Skogestad, 'Operation of integrated 3-product (Petlyuk) distillation-columns'. Ind. Eng. Chem. Res., 1995. 34: p. 2094-2103. [13] Mutalib, M.I.A. and R. Smith, 'Operation and control of dividing wall distillation columns - Part 1: Degrees of freedom and dynamic simulation'. Chem. Eng. Res. Des., 1998. 76: p. 308-318. [14] Mutalib, M.I.A., A.O. Zeglam, and R. Smith, 'Operation and control of dividing wall distillation columns - Part 2: Simulation and pilot plant studies using temperature control'. Chem. Eng. Res. Des, 1998. 76: p. 319-334. [15] Halvorsen, I.J. and S. Skogestad, 'Optimal operation of Petlyuk distillation: steady-state behavior'. Journal of Process Control, 1999. 9: p. 407-424. [16] Serra, M., M. Perrier, A. Espuna, and L. Puigjaner, 'Analysis of different control possibilities for the divided wall column: feedback diagonal and dynamic matrix control'. Comput. Chem. Eng., 2001. 25: p. 859-866. [17] Serra, M., A. Espuna, and L. Puigjaner, 'Controllability of different multicomponent distillation arrangements'. Ind. Eng. Chem. Res., 2003. 42: p. 1773-1782. [18] Adrian, T., H. Schoenmakers, and M. Boll, 'Model predictive control of integrated unit operations: Control of a divided wall column'. Chem. Eng. Process., 2003. 43: p. 347-355. [19] Wang, S.J. and D.S.H. Wong, 'Controllability and energy efficiency of a high-purity divided wall column'. Chem. Eng. Sci., 2007. 62: p. 1010-1025. [20] Cho, Y., B. Kim, D. Kim, M. Han, and M. Lee, 'Operation of divided wall column with vapor sidedraw using profile position control'. Journal of Process Control, 2009. 19: p. 932-941. [21] Ling, H. and W.L. Luyben, 'New control structure for divided-wall columns'. Ind. Eng. Chem. Res., 2009. 48: p. 6034-6049. [22] 黃琦聰(Huang)、黃聖夫、方 淞 『分隔內壁蒸餾塔簡介』 《化工技術》 第14 卷第7 期 (2006 年7 月號), p. 105–113. [23] Holland, S.T., R. Abbas, D. Hildebrandt, and D. Glasser, 'Complex column design by application of column profile map techniques: sharp-split Petlyuk column design'. Ind. Eng. Chem. Res., 2010. 49: p. 327-349. [24] Underwood, A.J.V., 'Fractional distillation of multicomponent mixtures'. Chem. Eng. Prog., 1948. 44: p. 603-614. [25] Halvorsen, I.J. and S. Skogestad, 'Minimum energy consumption in multicomponent distillation. 2. Three-product Petlyuk arrangements'. Ind. Eng. Chem. Res., 2003. 42: p. 605-615. [26] Gilliland, E.R., 'Multicomponent rectification - Estimation of the number of theoretical plates as a function of the reflux ratio'. Ind. Eng. Chem., 1940. 32: p. 1220-1223. [27] C. G. Kirkbride, 'Process design procedure for multicomponent fractionators '. Pet. Ref. 1944, 23, 321. [28] Kaymak, D.B. and W.L. Luyben, 'Quantitative comparison of reactive distillation with conventional multiunit reactor/column/recycle systems for different chemical equilibrium constants'. Ind. Eng. Chem. Res., 2004. 43: p. 2493-2507. [29] Tedder, D.W. and D.F. Rudd, 'Parametric studies in industrial distillation .1. Design comparisons'. AlChE J., 1978. 24: p. 303-315. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46324 | - |
| dc.description.abstract | 相較於傳統的蒸餾序列,內隔壁式蒸餾塔(DWC)可以節省更多的能量與與設備成本。然而,內隔壁式蒸餾塔在設計上也較為困難,因為較傳統序列擁有更多的設計自由度。此研究針對三種型態之內隔壁式蒸餾塔提出一套捷徑式設計法,在此我們建立了一個合理且有效率的物質流模組來描述塔內的物質流動,此方法是建立在將塔結構分成數個區域,並且應用Fenske、Underwood、Gilliland和Kirkbride公式來計算各個區域的設計變數。兩種真實系統的嚴謹模擬被用來驗證此設計法的成效,結果顯示藉由此方法所得到之設計結果很接近最小年總成本之設計。並且此設計方法也可提供最適化之起始值。在經濟效應分析的部份,我們藉由此設計法來計算各種不同分離難度指標進料下之年總成本。最後,根據最小年總成本我們可以知道在不同進料條件之下該如何選用哪一種內隔壁式蒸餾塔的指標。然而,控制方面的問題也應該被探討,對於隔板在中間與在上方的兩種內隔壁式蒸餾塔而言,氣提的分流將會是一個擾動,而此問題不存在於隔板在下方型態的蒸餾塔,因為此一考量,若在年總成本相同的情況下,則建議選用隔板在下方型態之內隔壁式蒸餾塔。本研究提供了一套捷徑式設計法,在不同的進料條件下之經濟效應分析也在本研究中被介紹。 | zh_TW |
| dc.description.abstract | Divided-wall columns (DWCs) can save energy and capital cost compared with traditional distillation columns. However the design of DWCs is more difficult because there are more degrees of freedom. This work provides a novel shortcut method that can be used for the design of three types of DWCs. A rational and efficient net flow model is constructed to describe DWC systems. The development of the method is based on dividing the DWC into several parts and applying the methods of Fenske-Underwood-Gilliland and the Kirkbride equation. A series of rigorous simulations are applied to two real systems in order to show the performance. The results show that the total annual cost (TAC) based on the design method is close to the minimum total annual cost. This method also provides good initial values for rigorous optimization. In economic analysis, this method is applied to calculate the total annual cost for different Ease of Separation Index (ESI) and different feed composition for three types of DWCs. Finally, the criterion of the choice of DWCs is presented according to TAC. However the control aspect should also receive attention, because of the vapor split disturbance problem for DWCM and DWCU. For an equivalent TAC, it is suggested to use DWCL according to this operating consideration. The steady state design and economic analysis for three types of DWCs in different feed condition are investigated in this work. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:03:37Z (GMT). No. of bitstreams: 1 ntu-99-R97524086-1.pdf: 2748487 bytes, checksum: e00d5f36f1320524b37a88f4e1c25dd6 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
致謝 i 摘要 iii Abstract v List of Figures vii List of Tables ix Contents xi 1 Introduction 2 1.1 Preface 2 1.2 Introduction for three types of DWCs 4 1.2.1 DWCL 4 1.2.2 DWCU 5 1.2.3 DWCM 6 1.3 Literature survey 8 1.4 Motivation 11 1.5 Dissertation organization 11 2 Shortcut design for DWCs 13 2.1 Models design and assumptions 13 2.1.1 DWCL 14 2.1.2 DWCU 15 2.1.3 DWCM 16 2.2 Minimum vapor flow calculations 20 2.2.1 DWCL 20 2.2.2 DWCU 24 2.2.3 DWCM 27 2.3 Design methods 32 2.3.1 DWCL 32 2.3.2 DWCU 36 2.3.3 DWCM 40 3 Model and shortcut method validation 46 3.1 Ideal system study 46 3.1.1 Analysis method 46 3.1.2 Thermodynamic properties 48 3.1.3 Results 49 3.1.3.1 DWCL 49 3.1.3.2 DWCU 51 3.1.3.3 DWCM 53 3.1.4 Discussion 56 3.2 Real system study 57 3.2.1 Analysis method 57 3.2.2 Example in literature 60 3.2.2.1 Ethanol, n-Propanol, n-Butanol system 60 3.2.2.2 Benzene, Toluene, Ethylbenzene system 64 3.2.3 Discussion 68 3.3 Summary 69 4 Economic analysis 70 4.1 Analysis method 70 4.2 Thermodynamic properties 71 4.3 Results 73 4.3.1 ESI<1 73 4.3.2 ESI=1 79 4.3.3 ESI>1 85 4.4 Discussion 91 5 Conclusion 92 Appendix A 93 References 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱整合塔 | zh_TW |
| dc.subject | 經濟效應 | zh_TW |
| dc.subject | 內隔壁式蒸餾塔 | zh_TW |
| dc.subject | 捷徑式設計 | zh_TW |
| dc.subject | 最適化 | zh_TW |
| dc.subject | optimization economical efficiency | en |
| dc.subject | thermal coupling column | en |
| dc.subject | divided wall column | en |
| dc.subject | shortcut design | en |
| dc.title | 內隔壁式蒸餾塔之穩態設計與經濟效應分析 | zh_TW |
| dc.title | Steady State Design and Economic Analysis of
Divided Wall Columns | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 余政靖 | |
| dc.contributor.oralexamcommittee | 李明哲,錢義隆,陳誠亮 | |
| dc.subject.keyword | 熱整合塔,內隔壁式蒸餾塔,捷徑式設計,最適化,經濟效應, | zh_TW |
| dc.subject.keyword | thermal coupling column,divided wall column,shortcut design,optimization economical efficiency, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
