請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46314完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭明燕(Ming-Yen Cheng) | |
| dc.contributor.author | Fu-Chen Chang | en |
| dc.contributor.author | 張富琛 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:03:07Z | - |
| dc.date.available | 2012-08-02 | |
| dc.date.copyright | 2010-08-02 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | [1] C. Loader (1999), Local Regression and Likelihood: Springer.
[2] S. T. Chiu (1991), 'Bandwidth selection for kernel density estimation,' Ann. Statist, vol. 19, pp. 1883-1905. [3] Tibshirani, R. J. and T. J. Hastie (1987). Local likelihood estimation. Journal of the American Statistical Association 82, 559-567. [4] Kharin, Y. S. (1983). Analysis and optimization of Rosenblatt-Parzen classifier with the aid of asymptotic expansions. Abtomatnka N Tenemexahnka (Automation and Remote Control) 44(1), 91-100(72-80) [5] Pregibon, D. (1981). Logistic regression diagnostics. The Annals of Statictics 9, 705-724. [6] Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics 19, 15-18. [7] Duin, R. P. W. (1976). On the choice of smoothing parameter for Parzen estimators of probability density functions. IEEE Transactions on Computing C-25, 1175-1179. [8] Van Ness, J and C. Simpson (1976) On the effects of dimension reduction in discriminant analysis. Technometrics 18, 175-187. [9] Habbema, J. D. F., J. Hermans and K. Van Der Broek (1974). A stepwise discriminant analysis program using density estimation. In G. Bruckman (Ed.), Compstat 1974, Proceedings in Computational Statistics, Vienna, pp. 101-110. Physica-Verlag. [10] Cover, T. M. and P. E. Hart (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory IT-13, 21-27. [11] Fix, E. and J. L. J. Hodges (1951). Nonparametric discrimination: Consistency properties. Technical report, USAF School of Aviation Medicine. [12] Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, Part II, 179-188 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46314 | - |
| dc.description.abstract | 本篇文章主要是在討探在多母體下的模型選擇。在這裡我們使用無母數的方法來做分析。我們想要找到一個判別準則有效率的辨別一群資料中任意一個資料點屬於哪一個母體。在這裡用的是貝氏的區分法則,建立在貝氏定理的基礎上。而且我們建立兩種估計的方法來決定兩種判別法則,也就是density estimation和logistic regression。現在的重點是找到一個方法能有效的增加這估計函數的準確度,而提升判別法則的精準度。在本文採用local likelihood density estimation和local logistic regression來估計未知函數,所以有兩種判別準則。藉由的帶寬選擇,以最小的AIC當做選取的標準能充份的對未知模型做選擇。在本文的模擬中顯示,只要樣本點數足夠多,此方法的確能有效改進選擇的成功率。 | zh_TW |
| dc.description.abstract | This paper is concerned with the problem of model selection among multiple populations. Here we use a nonparametric approach. We would like to find a decision rule to effectively identify which population each data comes from. We create a decision rule, based on Bayesian theorem, called Bayesian discriminant rule. Furthermore, we construct two estimated methods to decide the decision rule – density estimation and logistic regression. An unknown density function has to be estimated in the decision rule. Now it is vital to find an accurate way to estimate this density function or logistic probability to arise the classification rate. By using bandwidth selection for local likelihood density estimation or local logistic regression that minimizes AIC criterion does improve the results of model selection. A small simulation shows that for a large enough sample size, the method performs well. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:03:07Z (GMT). No. of bitstreams: 1 ntu-99-R95221021-1.pdf: 1146307 bytes, checksum: 2473e6933f5a37497bd9b9bfd7cb4995 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 系主任、所長 (簽名) i
摘要 ii Abstract iii Chapter 1 Introduction 1 1.1 Background 1 1.2 Structure of the thesis 1 Chap2 Local likelihood Density Estimation 2 2.1local likelihood density estimation 2 2.2local logistic regression 4 Chap3 Model selection 6 3.1 Bayesian discrimination rule 6 3.2 method of estimation 8 3.3diagnostics for local likelihood 9 3.3.1AIC for local likelihood 10 3.3.2AIC for local likelihood density 12 Chap4 Simulation 14 Chap5 Conclusion 17 Reference 18 | |
| dc.language.iso | en | |
| dc.subject | 貝氏區分法則 | zh_TW |
| dc.subject | 局部最大可能性邏輯迴歸分析 | zh_TW |
| dc.subject | 局部最大可能性機率密度函數估計 | zh_TW |
| dc.subject | 帶寬選擇 | zh_TW |
| dc.subject | 模型選擇 | zh_TW |
| dc.subject | local logistic regression | en |
| dc.subject | AIC | en |
| dc.subject | Bandwidth selection | en |
| dc.subject | classification | en |
| dc.subject | model selection | en |
| dc.subject | Bayesian discriminant rule | en |
| dc.subject | Local likelihood density estimation | en |
| dc.title | 運用貝氏定理下的模型選擇 | zh_TW |
| dc.title | Model selection in Bayesian method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴政,張淑惠 | |
| dc.subject.keyword | 模型選擇,貝氏區分法則,局部最大可能性機率密度函數估計,局部最大可能性邏輯迴歸分析,帶寬選擇, | zh_TW |
| dc.subject.keyword | model selection,Bayesian discriminant rule,Local likelihood density estimation,local logistic regression,classification,Bandwidth selection,AIC, | en |
| dc.relation.page | 18 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
