請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46293完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯逢春(Ferng-Chun Ke) | |
| dc.contributor.author | Wan-Shu Yao | en |
| dc.contributor.author | 姚捥恕 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:02:04Z | - |
| dc.date.available | 2010-07-28 | |
| dc.date.copyright | 2010-07-28 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-28 | |
| dc.identifier.citation | 參考文獻
1. Stephan Wullschleger, Robbie Loewith, Michael N. Hall. TOR Signaling in Growth and Metabolism. Cell 124, 471-484(2006). 2. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G. & Thompson, C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11-20 (2008). 3. Warburg, O. On the origin of cancer cells. Science 123, 309-314 (1956). 4. Warburg, O., Posener, K., Negelein, E., Biochem. Z. 152,319 (1924). 5. Roos, D., and Loos, J.A. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Exp. Cell Res. 77, 127–135(1973). 6. Wang, T., Marquardt, C., and Foker, J. Aerobic glycolysis during lymphocyte proliferation. Nature 261, 702–705(1976). 7. Weinhouse, S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 87, 115-126 (1976). 8. Fantin, V. R., St-Pierre J., Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425-434 (2006). 9. R. Moreno-Sanchez, S. Rodriguez-Enriquez, A. Marin-Hernandez, E. Saavedra, FEBS J. 274, 1393 (2007). 10. Hatzivassiliou, G., Zhao, F., Bauer, D.E., Andreadis, C., Shaw, A.N., Dhanak, D., Hingorani, S.R., Tuveson, D.A., and Thompson, C.B. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321(2005). 11. Parlo, R.A., and Coleman, P.S. Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J. Biol. Chem. 259, 9997–10003(1984). 12. Parlo, R.A., and Coleman, P.S. Continuous pyruvate carbon flux to newly synthesized cholesterol and the suppressed evolution of pyruvate-generated CO2 in tumors: further evidence for a persistent truncated Krebs cycle in hepatomas. Biochim. Biophys. Acta 886, 169–176 (1986). 13. Guppy, M., Greiner, E., and Brand, K. The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur. J. Biochem. 212, 95–99 (1993). 14. Matthew G. Vander Heiden, et al. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 324, 1029 (2009). 15. Dennis, J.W., Nabi, I.R., Demetriou, M. Metabolism, Cell Surface Organization, and Disease. Cell 139, 1229-1241(2009). 16. Kroemer,G., Pouyssegur, J. Tumor Cell Metabolism: Cancer’s Achilles’ Heel. Cancer Cell 13,472-482(2008). 17. Newsholme EA, Crabtree B, Ardawi MSM. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Reports 5:393–400 (1985). 18. Medina MA, Sa´nchez-Jime´nez F, Ma´rquez J, Quesada AR, Nu´n˜ez de Castro I. Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem 113:1–15 (1992). 19. DeBerardinis, R., Sayed, N., Ditsworth, D., Thompson, C.B., Brick by brick: metabolism and tumor cell growth. Curr. Opin. Gen. Dev. 18, 54–61(2008). 20. Aledo, J.C. Glutamine breakdown in rapidly dividing cells: waste or investment? Bioessays 26, 778-785 (2004). 21. Brand, K. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem. J. 228, 353–361. (1985). 22. Portais, J.C., Voisin, P., Merle, M., and Canioni, P. Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. Biochimie 78, 155–164 (1996). 23. Forbes, N.S., Meadows, A.L., Clark, D.S., and Blanch, H.W. Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis. Metab. Eng. 8, 639–652 (2006). 24. DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C.B. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA 104, 19345–19350 (2007). 25. Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R., and Lazebnik, Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178, 93–105 (2007). 26. Buzzai, M., Bauer, D.E., Jones, R.G., DeBerardinis, R.J., Hatzivassiliou, G., Elstrom, R.L., and Thompson, C.B. The glucose dependence of Akttransformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24, 4165–4173 (2005). 27. Lum, J.J., Bauer, D.E., Kong, M., Harris, M.H., Li, C., Lindsten, T., and Thompson, C.B. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005). 28. Chung, J., Grammer, T.C., Lemon, K.P., Kazlauskas, A. and Blenis, J. PDGF- and insulin-dependent pp70s6k activation mediated by phosphatidylinositol-3-OH kinase. Nature 370, 71–75 (1994). 29. Alessi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B. and Cohen, P. Characterization of a 3- phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7, 261–269 (1997). 30. Sarbassov, D.D., Guertin, D.A., Ali, S.M. and Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005). 31. Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K.L.TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002). 32. Zhang, Y., Gao, X., Saucedo, L.J., Ru, B., Edgar, B.A. and Pan, D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581 (2003). 33. Sarbassov, D.D., Ali, S.M. & Sabatini, D.M. Growing roles for the mTOR pathway. Curr Opin Cell Biol 17, 596-603 (2005). 34. Martin, D.E. & Hall, M.N. The expanding TOR signaling network. Curr Opin Cell Biol 17, 158-166 (2005). 35. Arsham, A.M. & Neufeld, T.P. Thinking globally and acting locally with TOR. Curr Opin Cell Biol 18, 589-597 (2006). 36. Dann, S.G., Selvaraj, A. & Thomas, G. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13, 252-259 (2007). 37. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629-635 (2002). 38. Jacinto, E., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6, 1122-1128 (2004). 39. Sarbassov, D.D., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14, 1296-1302 (2004). 40. Richter JD, Sonenberg N: Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature,433:477-480 (2005). 41. Sarbassov, . D.D., Ali, S.M., Kim, D.H., Guertin, D.A., Latek, R.R., Erdjument-Bromage, H., Tempst, P and Sabatini, D.M. Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton.Curr Biol 14. 1296-1302 (2004). 42. Lee, S,. Comer, F.I., Sasaki, A., McLeod, I.X., Duong, Y., Okumura, K., Yates J. R., III., Parent, C.A., and Firtel, R.A. TOR Complex 2 Integrates Cell Movement during Chemotaxis and Signal Relay in Dictyostelium. Mol Biol Cell 16,4574-4583 (2005). 43. Facchinetti, V., et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. Embo J 27,1932-1943 (2008). 44. Manning, B.D. & Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell 129, 1261-74 (2007). 45. Park, J., Leong M.L.L., Buse, P., Maiyar, A.C., Firestone G.L. and Hemmings B. A. Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase- stimulated signaling pathway. EMBO Journal .18 pp.3024–3033 (1999). 46. Hara, K., Yonezawa, K., Weng, Q.P., Kozlowski, M.T., Belham, C., and Avruch, J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484–14494 (1998). 47. Kapahi, P., et al. With TOR, Less Is More: A Key Role for the Conserved Nutrient-Sensing TOR Pathway in Aging. Cell Metabolism 11, 453-465 (2010). 48. Long, X. et al. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. The Journal of biological chemistry. 280, 23433-23436 (2005). 49. Saucedo L.J., Gao X., Chiarelli D.A., Li L., Pan D. and Edgar B.A. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5,566-571 (2003). 50. Bai, X., Ma, D., Liu, A., Shen, X., Wang, Q.J., Liu, Y., Jiang, Y. Rheb Activates mTOR by Antagonizing Its Endogenous Inhibitor, FKBP38. Science 318,977-998 (2007). 51. Byfield, M.P., Murray, J.T., Backer, J.M. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J. Biol. Chem. 280, 33076-33082 (2005). 52. Pawan Gulati, et al. Amino acids activate mTOR Complex 1 via Ca 2+/CaM signaling to hVps34. Cell Metabolism. 7, 456–465 (2008). 53. Nobukuni, T., Joaquin, M., Roccio, M., Dann, S.G., Kim, S.Y., Gulati, P., Byfield, M.P., Backer, J.M., Natt, F., Bos, J.L., et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. USA 102, 14238–14243 (2005). 54. Yasemin Sancak, et al. The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1. Science 320, 1496-1501 (2008). 55. Sancak, Y., et al. Ragulator-RagComplex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids. Cell 141, 290–303 (2010). 56. Findlay, G.M., YAN, L., Procter, J., Mieulet, V. and Lamb, R. F. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signaling. Biochem. J. 403, 13–20 (2007). 57. Dann, S. G. and Thomas,G. The amino acid sensitive TOR pathway from yeast to mammals. FEBS Letters 580,2821–2829 (2006). 58. Guda, P., Guda, C. and Subramaniam, S. Reconstruction of Pathways Associated with Amino Acid Metabolism in Human Mitochondria. Geno. Prot. Bioinfo. 5, 166-176 (2007). 59. Porter ,R. K. Mammalian mitochondrial inner membrane cationic and neutral amino acid carriers. Biochimica et Biophysica Acta 1459,356-362 (2000). 60. Xu, G., Kwon, G., Cruz, W. S., Marshall, C.A. and McDaniel, M. L. Metabolic Regulation by Leucine of Translation Initiation Through the mTOR-Signaling Pathway by Pancreatic β-Cells. Diabetes 50, 35 3-360 (2001). 61. Ruggero, D., et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10, 484-486 (2004). 62. Cunningham, J.T., et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450, 736-740 (2007). 63. Dennis, P.B., et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102-1105 (2001). 64. Fan, J.J. and Ke, F.C. Involvement of mTORCs in premature cell senescence induced by aminooxyacetate inhibition of mitochondrial malate-aspartate shuttle. Master thesis, Institute of molecular and cellular biology, National Taiwan University. (2008). 65. Eto, K., et al. Role of NADH Shuttle System in Glucose-Induced Activation of Mitochondrial Metabolism and Insulin Secretion. Science 283,981-985 (1999). 66. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37, 614-636 (1965). 67. Nartina, M., et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716 (2003). 68. Dimri, G. P., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367 (1995). 69. Tsai, M.J. and Ke, G.C. The reversal effect of amino acids on AOA-induced cellular senescenece. Master thesis, Institute of molecular and cellular biology, National Taiwan University. (2009). 70. Jousse, C., Bruhat, A., Ferrara, M. and Fafournoux, P. Evidence for Multiple Signaling Pathways in the Regulation of Gene Expression by Amino Acids in Human Cell Lines. The journal of nutrition. 130, 1555–1560 (2000). 71. Rosenbluth, R. J., et al. DON, CONV and DONV-II. Inhibition of L-asparagine synthetase in vivo. Biochemical Pharmacology 25, 1851-1858 (1976). 72. Rognstand, R. and Katz, J. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate. Biochem J 116, 483-491 (1970). 73. Lee CS.,Ke FC. The inducible senescence mechanism of human fibroblast WI38 by transaminase inhibitor aminooxyacetic acid. Master Thesis, Institute of molecular and cellular biology, National Taiwan University. (2005) 74. Hyde, R., Taylor, P.M. & Hundal, H.S. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J 373, 1-18 (2003). 75. Aledo, J.C., Segura, J.A., Medina, M.A., Alonso, F.J., Nunez de Castro, I., and ,arquez, J. Phosphate-activated glutaminase expression during tumor development. FEBS Lett 341, 39-42 (1994). 76. Westermark, P.O., et al. A mathematical model of the mitochondrial NADH shuttles and anaplerosis in the pancreatic β-cell. Am J Physiol Endocrinol Metab 292, E373–E393 (2007). 77. Guerrini L., Gong S.S., Mangasarian K., Basilico C. Cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Mol Cell Biol 13,3202-3212 (1993). 78. Gong, S.S., Guerrini, L., Basilico, C. Regulation of asparagine synthetase gene expression by amino acid starvation. Mol Cell Biol 11,6059-6066 (1991). 79. Cui, H., et al. Enhanced Expression of Asparagine Synthetase under Glucose-Deprived Conditions Protects Pancreatic Cancer Cells from Apoptosis Induced by Glucose Deprivation and Cisplatin. Cancer Res 67, 3345-3355 (2007). 80. Richards, N.G. J. and. Kilberg, M.S Asparagine Synthetase Chemotherapy. Annu. Rev. Biochem. 75,629–54 (2006). 81. Justin Lamb , et al. A Mechanism of Cyclin D1 Action Encoded in the Patterns of Gene Expression in Human Cancer. Cell 114, 323–334 (2003). 82. Rej, R. Aminooxyacetate is not an adequate differential inhibitor of aspartate aminotransferase isoenzymes. Clin Chem 23,1508-1509 (1977). 83. Su SY.and Ke FC. The blocking mechanism of Anaplerosis pathway on AOA induced Cellular senescence. Master Thesis, Institute of molecular and cellular biology, National Taiwan University. (2010). 84. Carriere, A., et al. mTORC1-Activated S6K1 Phosphorylates Rictor on Threonine 1135 and Regulates mTORC2 Signaling. Molecular and Cellular Biology 30, 908–921 (2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46293 | - |
| dc.description.abstract | 細胞增生(cell proliferation)在個體層級(organism level)上受到相當嚴謹的調控,過程中必須保有忠實性(fidelity),否則為避免錯誤被持續放大,細胞命運(cell fate)則會走向細胞凋亡(cell apoptosis)或細胞老化(cell senescence)。而細胞增生過程必須是細胞本體的內含物 (ex:粒線體、ribosomes數目)和大小(cell size)增加為原本的兩倍之多,進而連同以染色體(chromosomes)為主的細胞週期(cell cycle)分裂為兩個,其中細胞本體複製並累積的過程為細胞生長(cell growth)。細胞生長期間細胞會積極從外界送入養分後用以合成新巨分子同時增加細胞內含物,此時代謝狀態進行重整(metabolic reprogramming):以粒線體(mitochondria)為主之TCA cycle做為提供細胞合成巨分子前驅物的中心、期間能量問題由大大提升的糖解作用(glycolysis)因應,而胺基酸glutamine做為重要的TCA cycle補充(anaplerosis)來源之一。
於人類纖維母細胞WI38中,處理粒線體malate-aspartate shuttle之抑制物AOA(aminooxyacetate),會造成細胞生長停止、伴隨mTORC1活性急遽下降、mTORC2活性高度上升,長時間更導致細胞老化(cell senescence),顯示粒線體做為生長時代謝重整所需。而若將AOA和α-KG或NEAA共同處理下會阻卻AOA所造成的現象:α-KG做為TCA cycle intermediates,在細胞生長時期是相當重要的anaplerosis來源之一,推測因此而阻卻AOA效應;另外NEAA中只有aspartate與asparagine有阻卻AOA的效果,又aspartate較asparagine有效,進一步探討後,發現aspartate阻卻AOA效果最佳濃度為3mM且處理asparagine synthetase inhibitor(L-DON)無法影響aspartate阻卻AOA的效用,由D-malate結果顯示aspartate阻卻AOA效應透過與AOA競爭aspartate aminotransferase,以OAA的形式做TCA cycle的補充效果(anaplerosis)回復細胞生長。 此研究透過探討aspartate阻卻AOA效應的機制,凸顯出粒線體在細胞生長代謝的重要性,並且藉此思考粒線體做為營養感知的重要角色。 | zh_TW |
| dc.description.abstract | To maintain the homeostasis of organism, the process of cell proliferation should be promised the cell fidelity as the original cell. If not, the cell fate would be turned into cell apoptosis or cellular senescence in order to avoid amplified mistakes. Normally, cell proliferation is promoted by cell growth which is stimulated by growth factors while the extracellular nutrients are sufficient. Proliferating cells often take up a large amount of nutrients and shunt metabolites into pathways that support macromolecules biosynthesis and thereby increase in size and mass. In the meantime, cells reorganize the whole metabolic activity which is the process called “metabolic reprogramming”. Proliferating cells switch the role of mitochondria from producing energy to providing the macromolecule precursors for macromolecule biosynthesis and the energy demand during cell growth provided by upreglulated glycolysis. Moreover, glutamine-dependent anaplerosis is one of the major sources of TCA cycle intermediates.
In human embryonic fibroblast WI38 cells, the malate-aspartate shuttle inhibitor, AOA(aminooxyacetate) induced cell cycle arrest, reduced mTORC1 activity, promoted mTORC2 activity and even caused cellular senescence in the long time. All AOA- induced effects were blocked by co-treating with α-KG or NEAA. We speculated α-KG blocked AOA-induced effects by anaplerosis because α-KG serves as one of the important TCA cycle intermediates that support macromolecule biogenesis. Among NEAA, only aspartate and asparagine could block the AOA-induced effects and the ability of aspartate was better than asparagine. In the further research, the most effective concentration of aspartate was 3 mM and the asparagine synthetase inhibitor (L-DON) couldn’t interfere with the ability of aspartate . We found that aspartate blocked the AOA-induced effects may be via competing with AOA and increasing anaplerosis through OAA. In this study, we explore the important metabolic role and the nutrient sensing role of mitochondria during cell growth . | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:02:04Z (GMT). No. of bitstreams: 1 ntu-99-R96b43002-1.pdf: 1262085 bytes, checksum: e08b3893c3494867380d018bc7dccd82 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝......................................................ii
摘要.....................................................iii Abstract..................................................iv 目錄......................................................vi 圖目錄..................................................viii 檢索表....................................................ix 引言.......................................................1 細胞生長(Cell growth) ....................................1 Metabolic reprogram:粒線體(mitochondria)在細胞生長之角色轉換........................................................1 細胞生長的中心調節者......................................3 胺基酸(amino acids)調控mTORC1活性.........................6 粒線體之胺基酸感知(amino acids sensing)角色...............9 實驗目的..................................................12 材料與方法................................................15 材料.....................................................15 細胞培養與處理...........................................15 生長曲線.................................................16 老化比例測定.............................................16 細胞內含物萃取...........................................17 蛋白質電泳與西方轉漬法...................................17 結果......................................................19 NEAA可阻卻AOA所引發之cell cycle arrest及cellular senescence...............................................19 Aspartate有效阻卻AOA所引發之cell cycle arrest及cellular senescence...............................................20 Aspartate可減弱AOA對mTORC1及mTORC2的影響.................21 Aspartate阻卻AOA效應之機制探討........22 Aspartate非透過asparagine synthetase阻卻AOA效應.........22 Aspartate透過與AOA競爭轉變為OAA形式阻卻AOA效應..........23 討論......................................................24 參考文獻..................................................43 附錄......................................................52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 細胞老化 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 代謝重整 | zh_TW |
| dc.subject | AOA | zh_TW |
| dc.subject | 糖解作用 | zh_TW |
| dc.subject | cellular senescence | en |
| dc.subject | mitochondria | en |
| dc.subject | metabolic reprogramming | en |
| dc.subject | AOA | en |
| dc.subject | glycolysis | en |
| dc.title | 粒線體在細胞生長之胺基酸感知角色探討 | zh_TW |
| dc.title | The nutrient sensing role of mitochondria in cell growth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃火鍊,黃娟娟,李明亭,蕭培文 | |
| dc.subject.keyword | 粒線體,代謝重整,AOA,糖解作用,細胞老化, | zh_TW |
| dc.subject.keyword | mitochondria,metabolic reprogramming,AOA,glycolysis,cellular senescence, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
