請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46275
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
dc.contributor.author | Tsun-Yu Wen | en |
dc.contributor.author | 溫存郁 | zh_TW |
dc.date.accessioned | 2021-06-15T05:01:11Z | - |
dc.date.available | 2011-08-23 | |
dc.date.copyright | 2011-08-23 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-18 | |
dc.identifier.citation | 1. Wood, R.W., On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proceedings of the Physical Society of London, 1902. 18(1): p. 269.
2. Liedberg, B., C. Nylander, and I. Lunstrom, Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 1983. 4: p. 299-304. 3. Nylander, C., B. Liedberg, and T. Lind, Gas detection by means of surface plasmon resonance. Sensors and Actuators, 1982. 3: p. 79-88. 4. Manuel, M., et al., Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sensors and Actuators B: Chemical, 1993. 11(1-3): p. 455-459. 5. Liedberg, B., I. Lundstrom, and E. Stenberg, Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators B: Chemical, 1993. 11(1-3): p. 63-72. 6. Jorgenson, R.C. and S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 1993. 12(3): p. 213-220. 7. Vukusic, P.S., G.P. Bryan-Brown, and J.R. Sambles, Surface plasmon resonance on gratings as a novel means for gas sensing. Sensors and Actuators B: Chemical, 1992. 8(2): p. 155-160. 8. Kruchinin, A.A. and Y.G. Vlasov, Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor. Sensors and Actuators B: Chemical, 1996. 30(1): p. 77-80. 9. Nelson, S.G., K.S. Johnston, and S.S. Yee, High sensitivity surface plasmon resonace sensor based on phase detection. Sensors and Actuators B: Chemical, 1996. 35(1-3): p. 187-191. 10. Peters, D.W., An infrared detector utilizing internal photoemission. Proceedings of the IEEE, 1967. 55(5): p. 704-705. 11. Kosonocky, W.F., et al., 160 × 244 Element PtSi Schottky-barrier IR-CCD image sensor. Electron Devices, IEEE Transactions on, 1985. 32(8): p. 1564-1573. 12. Chen, C.K., B. Nechay, and B.Y. Tsaur, Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode. Electron Devices, IEEE Transactions on, 1991. 38(5): p. 1094-1103. 13. Duboz, J.Y. and P.A. Badoz, Hot-electron transport in epitaxial CoSi2 films. Physical Review B, 1991. 44(15): p. 8061. 14. Roca, E., et al., Increase in the infrared response of silicide Schottky barrier diodes by grain boundary scattering. Applied Physics Letters, 1995. 67(10): p. 1372-1374. 15. Torosian, K.M., A.S. Karakashian, and Y.Y. Teng, Surface Plasma-Enhanced Internal Photoemission in Gallium-Arsenide Schottky Diodes. Applied Optics, 1987. 26(13): p. 2650-2652. 16. Kock, A., et al., Surface-Plasmon Polariton Enhanced Light-Emission from Schottky Diodes. Applied Physics Letters, 1988. 52(14): p. 1164-1166. 17. Cazeca, M.J., C.C. Chang, and A.S. Karakashian, A model calculation for surface plasma‐enhanced internal photoemission in Schottky‐barrier photodiodes. Journal of Applied Physics, 1989. 66(7): p. 3386-3391. 18. Sellai, A. and P. Dawson, Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations. Solid-State Electronics, 2002. 46(1): p. 29-33. 19. Fukuda, M., et al., Light detection enhanced by surface plasmon resonance in metal film. Applied Physics Letters, 2010. 96(15): p. 153107-3. 20. Dmitruk, N., et al. Photosensitivity control of detectors based on surface plasmon-polariton resonance in Schottky structures. in Microelectronics, 1997. Proceedings., 1997 21st International Conference on. 1997. 21. Bosenberg, J., Photoelectrons from optically excited nonradiative surface plasma oscillations. Physics Letters A, 1971. 37(5): p. 439-440. 22. Macek, C., A. Otto, and W. Steinmann, Resonant Photoemission from Aluminium Films at 5 eV Photon Energy due to Nonradiative Surface Plasma Waves. physica status solidi (b), 1972. 51(1): p. K59-K61. 23. Berthold, K., W. Beinstingl, and E. Gornik, Frequency- and polarization-selective Schottky detectors in the visible and near ultraviolet. Opt. Lett., 1987. 12(2): p. 69-71. 24. Jestl, M., et al., Polarization- and wavelength-selective photodetectors. J. Opt. Soc. Am. A, 1988. 5(9): p. 1581-1584. 25. Jestl, M., et al., Polarization-Sensitive Surface-Plasmon Schottky Detectors. Optics Letters, 1989. 14(14): p. 719-721. 26. Nikitin, P.I. and A.A. Beloglazov, A multi-purpose sensor based on surface plasmon polariton resonance in a Schottky structure. Sensors and Actuators A: Physical, 1994. 42(1-3): p. 547-552. 27. Nikitin, P.I., et al., Silicon-based surface plasmon resonance chemical sensors. Sensors and Actuators B: Chemical. 38(1-3): p. 53-57. 28. Scales, C., I. Breukelaar, and P. Berini, Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon. Optics Letters, 2010. 35(4): p. 529-531. 29. Neutens, P., et al., Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photon, 2009. 3(5): p. 283-286. 30. Bora, M., et al., Near field detector for integrated surface plasmon resonance biosensor applications. Opt. Express, 2009. 17(1): p. 329-336. 31. Feng, W.-Y., Development of a Novel SPR-based Gas Sensor with ZnO Nano-structure. 2007. 32. Maier, S.A., Plasmonics: Fundamentals and Applications. 2007: Springer US. 33. Simon M. Sze, K.K.N., Physics of Semiconductor Devices. 3rd Edition ed. 2007: Wiley. 34. Henisch, H.K., Rectifying Semiconductor Contacts. Journal of The Electrochemical Society, 1956. 103(11): p. 637-643. 35. Razeghi, M. and A. Rogalski, Semiconductor ultraviolet detectors. Journal of Applied Physics, 1996. 79(10): p. 7433-7473. 36. Scales, C. and P. Berini, Thin-Film Schottky Barrier Photodetector Models. Ieee Journal of Quantum Electronics, 2010. 46(5): p. 633-643. 37. Dalal, V.L., Simple Model for Internal Photoemission. Journal of Applied Physics, 1971. 42(6): p. 2274-2279. 38. Vickers, V.E., Model of Schottky Barrier Hot-Electron-Mode Photodetection. Applied Optics, 1971. 10(9): p. 2190-&. 39. Mooney, J.M. and J. Silverman, The Theory of Hot-Electron Photoemission in Schottky-Barrier Ir Detectors. Ieee Transactions on Electron Devices, 1985. 32(1): p. 33-39. 40. Norton, D.P., et al., ZnO: growth, doping & processing. Materials Today, 2004. 7(6): p. 34-40. 41. Liang, S., et al., ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth, 2001. 225(2-4): p. 110-113. 42. Pachauri, V., et al., Site-Specific Self-Assembled Liquid-Gated ZnO Nanowire Transistors for Sensing Applications. Small, 2010. 6(4): p. 589-594. 43. Laks, D.B., et al., Acceptor doping in ZnSe versus ZnTe. Applied Physics Letters, 1993. 63(10): p. 1375-1377. 44. Kane, Y., Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on, 1966. 14(3): p. 302-307. 45. Scofield, J.H., Frequency-domain description of a lock-in amplifier. American Journal of Physics, 1994. 62(2): p. 129-133. 46. National-Instrument, NI Lock-In Amplifier Start-Up Kit. 47. LEDtronics. L200CWIR851 Infrared 5mm, Flanged Cylindrical, 8.6mm Height 16° viewing angle. 2007; Available from: http://dl.ledtronics.com/pdf/Dsdc0461.pdf. 48. Parallax. Photoconductive Cell VT900 Series. Available from: http://www.parallax.com/Portals/0/Downloads/docs/prod/compshop/Photoresitor%20Perkinelmer_Actives-and-Passives_9800015.pdf. 49. Averine, S., Y.C. Chan, and Y.L. Lam. Electrical properties of Schottky barrier in MSM-diode structures. in Semiconducting and Insulating Materials Conference, 2000. SIMC-XI. International. 2000. 50. Rideout, V.L., A review of the theory and technology for ohmic contacts to group III-V compound semiconductors. Solid-State Electronics, 1975. 18(6): p. 541-550. 51. Mettler-Toledo. Ethanol - METTLER TOLEDO - United States. Available from: http://us.mt.com/us/en/home/supportive_content/application_editorials.Ethanol_re_e.twoColEd.html. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46275 | - |
dc.description.abstract | SPR 是一種廣泛應用於各種方面,如物理、化學與生物感測上的技術。傳統的SPR感測需要使用光感測器,如CCD相機或光二極體等來進行感測。這些裝置通常體積較大,並且難以與其他裝置如半導體裝置等進行整合。
近期的研究將光感測器,如蕭基二極體與SPR感測器結合,以電信號方式感測SPR。蕭基二極體由金屬與半導體構成,當入射光線的能量大於蕭基能量障壁,金屬中的電子便能跨越蕭基能量障壁,進入半導體,成為電流。這個過程稱為內部電子放射。當SPR發生時,會加強內部電子放射,因而讓蕭基二極體的電流上升。藉由這個過程,SPR的光學信號被轉換為電信號。 在這篇論文中,我們設計了一個由金和氧化鋅構成的MSM蕭基感測器。我們使用有限時域分析模擬不同氧化鋅厚度造成的SPR表現變化,並且實際量測裝置的SPR曲線證明之。我們架構了一個以鎖相迴路放大器為核心的量測系統,整合SPR感測系統以及電感測系統,作為實驗的量測。 SPR量測以及電信號量測在系統中同時被量測,量測的結果顯示雖然電訊號的最小偵測極限大於SPR的光學量測,但我們設計的裝置依然可以擁有將SPR光學訊號轉為蕭基二極體電訊號的能力。 | zh_TW |
dc.description.abstract | Surface Plasmon Resonance (SPR) has been widely applied on physical, chemical and biological sensing. Traditional SPR sensing method use photodetector such as CCD camera and photodiode. Such device is huge and hard to integrate with other device such as semiconductor device.
Novel method integrate SPR sensor with photodetector such as Schottky detector. It transform SPR optical signal to electrical signal. Schottky detector is constituted by metal and semiconductor. When the energy of incident light exceeds the Schottky barrier of Schottky detector, the electron of metal will cross the Schottky barrier and become current, which is called internal photoemission. When SPR occurs, the internal photoemission of Schottky detector will be enhanced, and the current increases. The optical signal of SPR therefore transform to electrical signal. In this thesis, we design a MSM Schottky detector consist of Au and ZnO. We use FDTD method to simulate the effect of ZnO thickness on SPR performance, and measure SPR Curve of device to prove the simulation. We construct a measurement system integrate SPR measurement system and electrical measurement system. The core of measurement system is lock-in amplifier. The current of Schottky detector is measured simultaneously with SPR optical signal. The measurement result shows although the lowest detection limit is not as good as SPR measurement , such device is still capable of detect SPR optical signal via Schottky detector electrical signal. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:01:11Z (GMT). No. of bitstreams: 1 ntu-100-R98945005-1.pdf: 1479506 bytes, checksum: c5c920863ca2ce0501d61144ae4ede78 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Contents
口試委員會審定書 # 誌謝 i ABSTRACT ii 中文摘要 iii Contents iv LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Paper Review 2 1.3 Contributions 3 1.4 Structure of Device Design 4 1.5 Structure of this Thesis 5 Chapter 2 Theory Analysis 6 2.1 Surface Plasmon Resonance 6 2.1.1 Transverse Magnetic Modes and Transverse Electric Modes 6 2.1.2 Surface Plasmon Resonance between the Interface of Dielectric and Metal 8 2.2 Schottky Detector 10 2.2.1 Schottky Photodetector 11 2.2.2 Surface Plasmon Resonance Schottky Detector 12 2.3 Properties of Zinc Oxide 12 2.4 Finite-difference time-domain Method 14 2.5 Lock-in Amplifier 16 Chapter 3 Experimental Setup 19 3.1 The FDTD Simulation of SPR performance 19 3.2 The Fabrication of Schottky Detector for SPR sensing 20 3.2.1 Substrate Cleaning Procedures 21 3.2.2 Thin Films Deposition 21 3.3 The Analysis of Thin films 22 3.3.1 X-Ray Diffraction 22 3.3.2 Scanning Electron Microscope 23 3.3.3 Ellipsometry, EP3 23 3.4 Measurement System Setup 24 3.4.1 NI PXI 5411 Arbitrary Waveform Generator 25 3.4.2 NI PXI 4472 Dynamic Signal Acquisition Device 25 3.4.3 High-Power Infrared LED 27 3.4.4 Lock-in Amplifier 29 3.4.5 Experiments 30 Chapter 4 Results and Discussion 32 4.1 FDTD Simulation Result 32 4.2 Fabrication Results 33 4.2.1 SPR Curve 34 4.2.2 XRD Analysis 35 4.2.3 SEM Analysis 35 4.2.4 I-V Curve 36 4.3 Experiment Result 38 4.3.1 Device Characterization Result 38 4.3.2 System Performance Result 39 4.3.3 Performance evaluation Result 41 Chapter 5 Conclusion and Future works 47 References 49 | |
dc.language.iso | en | |
dc.title | 以MSM結構設計之感測元件應用於表面電漿共振量測之研究 | zh_TW |
dc.title | Application of MSM Schottky Detector on Surface Plasmon Resonance Sensing | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),邱南福(Nan-Fu Chiu) | |
dc.subject.keyword | 表面電漿共振,蕭基二極體,內部電子放射,氧化鋅,有限時域分析, | zh_TW |
dc.subject.keyword | Surface Plamon Resonance,Internal Photoemission,MSM Schottky detector,FDTD Method,,ZnO, | en |
dc.relation.page | 51 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-18 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。