Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46270
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成
dc.contributor.authorYu-An Chuen
dc.contributor.author朱昱安zh_TW
dc.date.accessioned2021-06-15T05:00:56Z-
dc.date.available2015-07-29
dc.date.copyright2010-07-29
dc.date.issued2010
dc.date.submitted2010-07-27
dc.identifier.citation1. M. Gray, Z. Xu, J. Masliyah, (2009) Physics in the oil sands of Alberta. Physics Today 31-35.
2. B. R. Munson, D. F. Young, T. H. Okiishi,(2002)Fundamentals of fluid mechanics 4th. Wiley.
3. J. Feng, H. H. Hu, D. D. Joseph, (1994) Direct simulation of initial value problem for the motion of solid bodies in a Newtonian fluid Part1. Sedimentation. J. Fluid Mech. 261:95-134.
4. Z. Yu, N. Phan-Thien, Y. Fan, R. I. Tanner, (2002) Viscoelastic mobility problem of a system of particles. J. Non-Newtonian Fluid Mech. 104:87-124.
5. C. Jackson (1987) A finite-element study of the onset of vortex shedding in flow past variously shape bodies. J. Fluid Mech.182:23-45.
6. D. Sucker, H. Brauer, (1975) Fluiddynamik bei quer angeströmten Zylindern. Wärme-und Stoffübertragung . 8:149-158.
7. B. Fornberg, (1980) A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98:819-855.
8. R. H. Davis, A. Acrivos, (1985) Sedimentation of noncolloidal particles at low Reynolds numbers, Ann. Rev. Fluid Mech. 17:91-118.
9. R. L. Whitmore, (1955) The sedimentation of suspensions of spheres. Br. J. Appl. Phys. 6:239-245.
10. R. H. Weiland, Y. P. Fessas, B. V. Ramarao, (1984) On instabilities during sedimentation of two-component mixtures of solids. J. Fluid Mech. 142:383-389.
11. A. E. Boycott, (1920) Sedimentation of blood corpuscles. Nature 104:532-538.
12. E. Ponder, (1925) On sedimentation and rouleaux formation. Q. J. Exp. Physiol. 15:235-252.
13. H. Nakamura, K. Kuroda, (1937) La cause de l'aceleration de la vitesse de sedimentation des suspension dans les recipents inclines, Keijo J. Wed. 8:256-296.
14. K. Kinosita, (1949) Sedimentation in tilted vessels. J. Colloid Interface Sci. 4:525-536.
15. W. D. Hill, R. R. Rothfus, K. Li, (1977) Boundary-enhanced sedimentation due to settling convection. Int. J. Multiphase Flow 3:561-583.
16. E. Herbolzheimer, A. Acrivos, (1981) Enhanced sedimentation in narrow tilted channels. J. Fluid Mech. 108:485-499.
17. A. Acrivos, E. Herbolzheimer, (1979) Enhanced sedimentation in settling tanks with inclined walls. J. Fluid Mech. 92: 435-457.
18. A. Borhan, A. Acrivos, (1988) The sedimentation of nondiute suspensions in inclined settlers. Phys. Fluid 31:3488-3501.
19. B. Kappor, A. Acrivos, (1995) Sedimenation and seiment flow in settling tanks with inclined walls. J. Fluid Mech. 290:39-6.
20. S. J. McCaffery, L. Elliott, D. B. Ingham, (1998a) One-dimensional enhanced sedimentation in inclined fracture channels. Math. Engng, Ind. 6: 261-290.
21. S. J. McCaffery, L. Elliott, D. B. Ingham, (1998b) Two-dimensional enhanced sedimentation in inclined fracture channels. Math. Engng, Ind. 7: 97-125.
22. D. M. Snider, P. J. O'Rourke, M. J. Andrew, (1998) Sediment flow in inclined vessels calculated using a multiphase particles-in-cell model for dense particle flows. Int. J. Multiphase Flow 24:1359-1382.
23. Z. J. Xu, E. E. Michaelides, (2005) A Numberical Simulation of the Boycott effect. Chem. Eng. Comm. 192:532-549.
24. D. H.-S. Law, R. S. Mactaggart, K. Nandakumar, J. H. Masliyah, (1988) Settling behavior of heavy and buoyant particles from a suspension in an inclined channel. J. Fluid Mech. 187:301-318.
25. H. H. Hu, D. D. Joseph, M. J. Crochet, (1992) Direct simulation of fluid particle motions. Theor. Comp. Fluid Dyn. 3:285-306.
26. H. H. Hu, (1996) Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22:335-352.
27. N.A. Patankar, (1997) Numerical simulation of particulate two-phase flow. Ph.D. dissertation. University of Pennsylvania.
28. A. Johnson, T. Tezduyar. (1998) Direct Numerical Simulation of Fluid-Particle Flow with 1000 Spheres. AHPCRC Preprint 98-023.
29. R. Glowinski, T.-W. Pan and J. Periaux. (1996) Fictitious domain methods for incompressible viscous flow around moving rigid bodies. in J.R. Whiteman, editor, The Mathematics of Finite Elements and Applications: Highlight 1993, pages155-174.Wiley.
30. R. Glowinski, T.-W. Pan and J. Periaux, (1997) A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bodies (I): the case where the rigid bodies motions are known a priori. C. R. Acad. Sci. Paris 324:361-369.
31. Pan, T.W., Chang, C.C., Glowinski, R. (2008) On the motion of a neutrally buoyant ellipsoid in a three-dimensional Poiseuille flow. Computer Methods in Applied Mechanics and Engineering 197:2198-2209.
32. R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph. (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25:775-794.
33. R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph. J. Periaux. (2000) A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Part Moving Rigid Bodies: Application to Particulate Flow. J. Comp. Phys. 162:1-64.
34. R. Glowinski, T.-W. Pan, T. I. Hesla, D. D. Joseph, J. Periaux (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulateflow, J. Comput. Phys. 169:363-426.
35. R. Glowinski, (1991) Finite element methods for the numerical simulation of incompressible viscous flow. Introduction to the control of the Navier-Stokes equations. Lectures in Applied Mathematics, 28:219-301.
36. J. Hao, T.-W. Pan, R. Glowinski, D. D. Joseph, (2009) A fictitious domain/distributed Lagrange multiplier method for the particulate flow of Oldroy-B fluid: A positive definiteness preserving approach,.J. Non-Newtonian fluid Mech. 156:95-111.
37. A. J. Chorin, T. J. R. Hughes, M. F. McCracken, J. E. Mardsen, (1978) Product formulas and numerical algorithms. J. Vomm. Pure Appl. Math, 31:205-256.
38. R. Glowinski, (2003) Finite element methods for incompressible viscous flow. Handbook of Numerical Analysis, P.G. Ciarlet, J.-L. Lions (deceased) eds., North-Holland, Amsterdam, 4:3-1976.
39. E. J. Dean, R. Glowinski, (1997) A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow. J. C.R. Acad. Sci. Paris, Série I, t. 325:783-791.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46270-
dc.description.abstract在本論文中,我們主要研究方向為:Boycott effect、輕、重粒子所構成之雙分散系統。對於二維-固液二相系統,我們考慮液體為黏性且不可壓縮之牛頓流體、固體為圓柱之剛體。根據Glowinski、Pan、Chang等學者所發展之分布式拉格朗日乘數法/虛擬區域(DLM/FD),分析粒子於傾斜容器之沉降行為,有別於傳統分析方法,我們考慮粒子-粒子、粒子-壁面及粒子-流體之相互關係,可詳細地描述每顆粒子之位置、速度及角速度。
首先,對於Boycott effect之問題,已有許多學者透過實驗、理論及模擬分析,且大多數學者皆根據簡單PNK模型,作為預測界面沉降速度之依據。在本論文中,我們將透過更精確地數值計算,考慮不同體積分率(10%, 15%, 20%)及傾斜角度 0°、10°、20°、30°、40°、50°及60°,可得粒子沉降軌跡、界面沉降速度、整體渦流及局部二次渦流於論文之數值結果中,並比較界面沉降與PNK模型之關係,說明低傾斜角度時,流場會產生不穩定之局部渦流,進而影響沉降界面,此時PNK將不適用。
其次,對於雙分散系統之問題,截至目前為止,其數值模擬研究尚未有詳細介紹,為了瞭解此系統之沉降行為,我們考慮輕、重粒子數各50顆,且總體積分率為20%,分別沉降於傾斜角度 0°、20°、30°、40°及50°之情況。利用相同概念,我們亦解釋輕、重粒子於傾斜容器之流場變化。由數值結果可知,初始沉降時,輕、重粒子密度不同,造成傾斜管內產生局部正、負小渦流,此時流場之對流為雜亂且不穩定;當沉降持續發展後,局部渦流逐漸結合成較大之渦流,此時流場之對流為一穩定之順時鐘方向,與容器傾斜方向有關。另外,我們修改PNK模型分別討論輕、重懸浮區重疊及分離之界面沉降。
對於傾斜管沉降之問題而言,在傳統分析上,可知流場內存在一主要整體對流,但對於局部渦流影響界面沉降之部分,卻無法加以說明。因此我們藉由DLM/FD之數值方法,可以成功觀察到局部渦流,並透過本文之研究,可以了解局部渦流於傾斜管之沉降過程中,扮演了一個很重要角色。
zh_TW
dc.description.abstractIn this thesis, we have studied the Boycott effect for heavy particles and bidisperse suspension that contains light and heavy particles. In these two-dimensional solid-liquid two-phase systems, the fluid is a viscous incompressible Newtonian fluid and the particles are rigid disks. We have applied a distributed Lagrange multiplier/fictitious domain method, developed by Glowinski, Pan, Chang, et al., to simulate the motion of particles during the sedimentation process in an inclined closed channel. We have considered the particle-particle, particle-wall and particle-fluid interactions, and calculated all particle positions, settling velocities, and angular velocities via the direct numerical simulation.
In the most of study related to the Boycott effect, continuum theory and the PNK model have been used to predict the interface between the clear fluid and the suspension. In this thesis, we have computed the fluid velocity field and the trajectories of particles with different solid fractions (10%, 15%, 20%) and tilted angles (0°, 10°, 20°, 30°, 40°, 50° and 60°). The global convection and local secondary vortexes are observed in our simulation results (in an inclined channel). We have compared our results with the PNK model, and found that the local vortexes affect the interface settling velocity in a low tilted channel.
For the bidisperse suspension problem, we have considered a suspension of light and heavy particles of equal size in a tilted channel with the total solid fraction of 20% and the angle of 0°, 20°, 30°, 40° and 50°, respectively. We have calculated the light and heavy particle trajectories and the fluid velocity field via the direct numerical simulation. We have found that smaller local vortexes merge and form a clockwise rotation of a global convection in time. The simulation results have been compared with the prediction of the interfaces of the light and heavy particles, respectively, based on a modified PNK model when both types of particles are either fully mixed or completely separated.
In conclusion, although the continuum theory can explain global convection associated with the sedimentation in a tilted channel, it still couldn't describe the local vortex occurrence. In this thesis, we have shown how the local smaller vortexes have a strong effect on the interface settling velocity in a low tilted channel.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:00:56Z (GMT). No. of bitstreams: 1
ntu-99-R96543077-1.pdf: 17209031 bytes, checksum: 6a4d0237237fced50eceed79f1a52f6a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書......................................... I
致謝.................................................... II
中文摘要............................................... III
英文摘要(Abstract)..................................... V
目錄................................................... VII
圖目錄................................................... X
表目錄................................................. XVI
第一章 緒論.............................................. 1
1-1 前言............................................. 1
1-2 單一粒子之沉降行為............................... 1
1-2-1史托克分析................................... 1
1-2-2單一粒子沉降於有限寬度之通道................. 4
1-2-3壁面效應..................................... 8
1-3 低雷諾數之沉降行為.............................. 10
1-3-1 單分散之沉降過程........................... 10
1-3-2 多分散之沉降過程........................... 11
1-3-3 傾斜管之沉降過程........................... 14
1-3-4 沉降過程之無因次參數....................... 17
1-4 傾斜容器之雙分散系統............................ 18
1-5 研究目的........................................ 19
第二章 數學架構......................................... 21
2-1 背景............................................ 21
2-2運動方程式....................................... 21
2-2-1 強形式.................................... 22
2-2-2 碰撞對策.................................. 25
2-2-3 弱形式.................................... 27
2-3 虛擬區域之架構.................................. 29
第三章 數值方法......................................... 33
3-1 空間離散化...................................... 33
3-2 時間離散化...................................... 36
3-3 子問題求解...................................... 40
第四章 數值結果......................................... 41
4-1單一粒子沉降..................................... 41
4-1-1不同雷諾數下之沉降軌跡..................... 41
4-1-2阻力係數................................... 47
4-2 單分散系統-Boycott effect....................... 49
4-2-1 粒子體積分率為0.1......................... 49
4-2-2 粒子體積分率為0.15及0.2之界面沉降速度..... 68
4-3 雙分散系統於傾斜管.............................. 73
4-3-1 傾斜角度為20度之界面沉降速度.............. 73
4-3-2 傾斜角度為30、40及50度之界面沉降速度...... 82
第五章 結論與未來展望................................... 97
5-1 結論............................................ 97
5-2 未來展望....................................... 101
參考文獻............................................... 103
附件A.................................................. 107
附件B.................................................. 111
附件C.................................................. 115
附件D.................................................. 129
附件E.................................................. 133
附件F.................................................. 137
附件G.................................................. 151
附件H.................................................. 155
附件I.................................................. 159
附件J.................................................. 162
附件K.................................................. 165
附件L.................................................. 168
附件M.................................................. 173
dc.language.isozh-TW
dc.subject界面沉降速度zh_TW
dc.subject雙分散懸浮系統zh_TW
dc.subjectBoycott effectzh_TW
dc.subject局部渦流zh_TW
dc.subjectBoycott effecten
dc.subjectbidisperse suspension systemen
dc.subjectlocal vortexen
dc.subjectinterface settling velocityen
dc.title分佈式拉格朗日乘數/虛擬區域法模擬雙分散懸浮沉降之行為zh_TW
dc.titleA distributed Lagrange multiplier/fictitious domain method for settling behavior of bidisperse suspensionen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor潘從輝
dc.contributor.oralexamcommittee朱錦洲,陳國慶,包淳偉
dc.subject.keyword雙分散懸浮系統,Boycott effect,界面沉降速度,局部渦流,zh_TW
dc.subject.keywordbidisperse suspension system,Boycott effect,interface settling velocity,local vortex,en
dc.relation.page175
dc.rights.note有償授權
dc.date.accepted2010-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
16.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved