請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4626完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁偉立 | |
| dc.contributor.author | Sheng-Lun Li | en |
| dc.contributor.author | 李勝倫 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:44:18Z | - |
| dc.date.available | 2016-07-30 | |
| dc.date.available | 2021-05-14T17:44:18Z | - |
| dc.date.copyright | 2015-07-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-29 | |
| dc.identifier.citation | 林光清、洪富文、程煒兒、蔣先覺、張雲翔(1996)福山試驗林土壤調查與分類。臺灣林業科學 11:159-174。
林登秋(2012)颱風對森林生態系的影響:福山啟示錄。林業研究專訊19 (6):53-58。 小林政廣、小野寺真一、加藤正樹(2000)樹木ソ存在ゎ林地土壌中ソ水分動態ズ与りペ影響。日林誌 82:287-294。 Baroni, G., B. Ortuani, A. Facchi, and C. Gandolfi. 2013. The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field. J. Hydrol. 489:148-159. Beven, K.J., and M.J. Kirkby. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24:43-69. Biswas, A. 2014. Season- and depth-dependent time stability for characterising representative monitoring locations of soil water storage in a hummocky landscape. CATENA 116:38-50. Brocca, L., R. Morbidelli, F. Melone, and T. Moramarco. 2007. Soil moisture spatial variability in experimental areas of central italy. J. Hydrol. 333:356-373. Brocca, L., F. Melone, T. Moramarco, and R. Morbidelli. 2009. Soil moisture temporal stability over experimental areas in central italy. Geoderma 148:364-374. Cosh, M.H., T.J. Jackson, S. Moran, and R. Bindlish. 2008. Temporal persistence and stability of surface soil moisture in a semi-arid watershed. Remote Sens. Environ. 112:304-313. Dunne, T., and R.D. Black. 1970. An experimental investigation of runoff production in permeable soils. Water Resour. Res 6:478-490. Famiglietti, J.S., J.W. Rudnicki, and M. Rodell. 1998. Variability in surface moisture content along a hillslope transect: Rattlesnake hill, texas. J. Hydrol. 210:259-281. Gómez-Plaza, A., M. Martı́nez-Mena, J. Albaladejo, and V.M. Castillo. 2001. Factors regulating spatial distribution of soil water content in small semiarid catchments. J. Hydrol.253:211-226. Grant, L., M. Seyfried, and J. McNamara. 2004. Spatial variation and temporal stability of soil water in a snow-dominated, mountain catchment. Hydrol. Process. 18:3493-3511. Grayson, R.B., A.W. Western, F.H.S. Chiew, and G. Blöschl. 1997. Preferred states in spatial soil moisture patterns: Local and nonlocal controls. Water Resour. Res. 33:2897-2908. Grayson, R.B., and A.W. Western. 1998. Towards areal estimation of soil water content from point measurements: Time and space stability of mean response. J. Hydrol. 207:68-82. Hu, W., A. Biswas, and B.C. Si. 2014. Application of multivariate empirical mode decomposition for revealing scale-and season-specific time stability of soil water storage. CATENA 113:377-385. Huisman, J.A., S.S. Hubbard, J.D. Redman and A.P. Annan. 2003 Measuring soil water content with ground penetrating radar: A review. Vadose Zone J. 2:476-491. Johnson, M.S., and J. Lehmann. 2006. Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience 13:324-333. Kachanoski, R.G., and E. de Jong. 1988. Scale dependence and the temporal persistence of spatial patterns of soil water storage. Water Resour. Res. 24:85-91. Liang, W.-L., F.-X. Hung, M.-C. Chan, and T.-H. Lu. 2014. Spatial structure of surface soil water content in a natural forested headwater catchment with a subtropical monsoon climate. J. Hydrol. 516:210-221. Lin, H. 2006. Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the shale hills catchment. Vadose Zone J. 5:317-340. Luxmoore, R.J., P.M. Jardine, G.V. Wilson, J.R. Jones, and L.W. Zelazny. 1990. Physical and chemical controls of preferred path flow through a forested hillslope. Geoderma 46:139-154. Mohanty, B.P., and T.H. Skaggs. 2001. Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation. Adv. Water Resour. 24:1051-1067. Molina, A.J., J. Latron, C.M. Rubio, F. Gallart, and P. Llorens. 2014. Spatio-temporal variability of soil water content on the local scale in a mediterranean mountain area (vallcebre, north eastern spain). How different spatio-temporal scales reflect mean soil water content. J. Hydrol. 516:182-192. Penna, D., L. Brocca, M. Borga, and G. Dalla Fontana. 2013. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. J. Hydrol. 477:55-71. Ranney, K.J., J.D. Niemann, B.M. Lehman, T.R. Green, and A.S. Jones. 2015. A method to downscale soil moisture to fine resolutions using topographic, vegetation, and soil data. Adv. Water Resour. 76:81-96. Robinson, D.A., C.S. Campbell, J.W. Hopmans, B.K. Hornbuckle, S.B. Jones, R. Knight, F. Ogden, J. Selker, and O. Wendroth. 2008. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 7:358-389. Tarboton, D.G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res. 33:309-319. Tromp-van Meerveld, H.J., and J.J. McDonnell. 2006. On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Adv. Water Resour. 29:293-310. Tsuboyama, Y., R.C. Sidle, S. Noguchi, S. Murakami, and T. Shimizu. 2000. A zero-order basin—its contribution to catchment hydrology and internal hydrological processes. Hydrol. Process. 14:387-401. Tsukamoto, Y., T. Ohta, and H. Noguchi. 1982. Hydrological and geomorphological studies of debris slides on forested hillslopes in japan. International Association of Hydrological Sciences Publication 137:89-98. Vachaud, G., A. Passerat De Silans, P. Balabanis, and M. Vauclin. 1985. Temporal stability of spatially measured soil water probability density function1. Soil Sci. Soc. Am. J. 49:822-828. Vanderlinden, K., H. Vereecken, H. Hardelauf, M. Herbst, G. Martínez, M.H. Cosh, and Y.A. Pachepsky. 2012. Temporal stability of soil water contents: A review of data and analyses. Vadose Zone J. 11. Wang, T., D.A. Wedin, T.E. Franz, and J. Hiller. 2015. Effect of vegetation on the temporal stability of soil moisture in grass-stabilized semi-arid sand dunes. J. Hydrol. 521:447-459. Western, A.W., R.B. Grayson, G. Blöschl, G.R. Willgoose, and T.A. McMahon. 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 35:797-810. Zhu, Q., and H. Lin. 2011. Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma 163:45-54. Zielinski, J. 2002. Watershed vulnerability analysis. Center for watershed protection. Ellicot City, MD 21043. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4626 | - |
| dc.description.abstract | 森林源頭集水區表層土壤水的分布及動態同時受到地形、植生分布及土壤性質等環境因子所影響而具有強烈的空間變異,此測量尺度下,除了以高時空解析度監測表層土壤含水率之時空變動外,若能建立以少量樣點推估森林源頭集水區表層土壤平均含水率,將有助於瞭解大氣及土壤界面之水文反應及交換作用。本研究以森林源頭集水區內表層土壤含水率的高時空解析度測量資料為基礎,嘗試減少樣本數並在最具代表性的位置取樣以估計源頭集水區的平均含水率。本研究利用手持式時域反射儀(TDR)對459個樣點0-12 cm的土壤含水率做了詳細的測量,一年內共進行了12次的調查。透過相對差異法分析各樣點的時間穩定性並篩選出代表性樣點。以不同數量樣本所得之平均含水率與樣區平均含水率之殘差平方和(RSS)及線性迴歸的r2值,並與野外調查中常用的系統取樣法比較,估計多少樣本數才足以代表源頭集水區平均含水率。確定所需的樣本數以後,利用環境因子及坡地區位為線索,分析代表性樣點的分布特性。本研究結果顯示以時間穩定指數(ITS)最小的代表性樣點進行估計時所需要的樣本數為8,系統取樣所需的樣本數則大於15。代表性樣點的分布位置與土壤、植生、地形等環境因子並未表現出顯著的相關性,而與坡地區位較為相關。全年的分析結果顯示,代表性樣點多分布於沖蝕溝及谷源中段西側,其中沖蝕溝的含水率具有強烈的空間變異,不具代表性與具有代表性的樣點分布區位重疊,因此該地不適合作為樣區平均含水率之採樣地點。邊坡的含水率雖具有高時間穩定性但總是相對乾燥,於此區域測得的數值會低於樣區平均含水率,而不具有代表性。代表性樣點的分布隨著樣區乾濕狀態的不同而變動,樣區較乾燥時,代表性樣點的分布較無明顯趨勢。當樣區較濕潤,地表、地中逕流等側向水分移動較旺盛時,其分布則向樣區中央集中。 | zh_TW |
| dc.description.abstract | Surface moisture (θ) in a forested headwater catchment would vary greatly in space and time due to the influences of topography, vegetation, and soil properties. In addition to the monitoring network with highly spatial and temporal resolutions, developing an effective method to measure the average surface moisture with few samples would be efficient to understand the hydrological responses and interactions at the atmosphere-soil interface in a forested headwater catchment. In this study, we tried to estimate average surface moisture with a small sample size and to find the locations with representativeness. We measured θ at the depths of 0-12 cm at 459 measurement points using portable TDR (time domain reflectometry) sensors. Twelve surveys were conducted within 1 year in a natural forested headwater catchment. Temporal stability of each measurement point was analyzed by the relative difference approach. The mean soil moistures determined by temporal stability and systematic sampling methods were compared to average surface moisture for each survey. The minimum sample size necessary to estimate average surface moisture was determined with the residual sum of squares (RSS) and r2 value of linear regression between mean soil moistures and average surface moisture. We also analyzed the relationships of the representative samples (Sr) and environmental factors (i.e. topography, vegetation, and soil properties) in space and time. The results showed that 8 samples with minimum index of temporal stability (ITS) were sufficient to estimate average surface moisture, while more than 15 systematic samples were necessary. The correlations between the spatial distributions of Sr and environmental factors were weak. Most of Sr located at the valley-head hillslope and gullies. Gullies were not necessarily good locations for Sr where the best and worst representative samples existed. The spatial distribution of Sr varied with the dry and wet conditions. When average surface moisture was lower, the spatial pattern of Sr could not be characterized by environmental factors. When average surface moisture was higher, Sr tended to locate around the center of the headwater catchment. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:44:18Z (GMT). No. of bitstreams: 1 ntu-104-R02625004-1.pdf: 8497679 bytes, checksum: 50786cbd23097e44e10c753f3d1652d0 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 謝辭 I
摘要 II Abstract III 目錄 IV 圖目錄 VI 第一章、 研究背景 1 1.1 集水區尺度土壤水之研究 3 1.1.1 半變異數分析與空間結構 3 1.1.2 時間穩定性與代表性樣點 4 1.2 研究目的 7 第二章、 材料與方法 8 2.1 研究樣區 8 2.2 樣區資料調查 9 2.2.1 土壤水分資料 9 2.2.2 環境因子調查 9 2.3 資料分析方法 12 2.3.1時間穩定性分析 12 2.3.2決定樣本數量 13 2.3.3 含水率時間穩定性與環境因子之相關性分析 14 第三章、 含水率與環境因子測量結果 15 3.1 土壤含水率時間變動與空間分布 15 3.2 土壤含水率時間穩定性分析 17 3.3 不同位置的含水率時間穩定性 18 3.4 環境因子空間分布 20 3.4.1 土壤物理性質 20 3.4.2 地形 21 3.4.3 植生分布 21 3.5 小結 23 第四章、 多少的樣點數足以估計源頭集水區平均含水率? 24 4.1 以系統取樣估計平均含水率需要多少樣本? 25 4.2 考慮時間穩定性時,估計平均含水率需要多少樣本? 27 4.3 小結 32 第五章、 何處的含水率測量結果較具有代表性? 33 5.1 方法一、以環境因子為線索 34 5.1.1 環境因子與時間穩定性的相關性 34 5.1.2 環境因子對代表性樣點分布的影響 35 5.2 方法二、以坡地區位為線索 40 5.3乾濕情況下的差別 42 5.4 小結 45 第六章、 結論 47 參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 時域反射法(TDR) | zh_TW |
| dc.subject | 源頭集水區 | zh_TW |
| dc.subject | 土壤含水率 | zh_TW |
| dc.subject | 時間穩定性 | zh_TW |
| dc.subject | 樣本數 | zh_TW |
| dc.subject | 代表性樣點 | zh_TW |
| dc.subject | representative sample | en |
| dc.subject | sample size | en |
| dc.subject | headwater catchment | en |
| dc.subject | soil moisture | en |
| dc.subject | time domain reflectometry (TDR) | en |
| dc.subject | temporal stability | en |
| dc.title | 源頭集水區表層土壤平均含水率推估之研究 | zh_TW |
| dc.title | Estimation of Average Soil Water Content at the Surface Soil Layer in a Headwater Catchment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信雄,賴彥任 | |
| dc.subject.keyword | 源頭集水區,時域反射法(TDR),土壤含水率,時間穩定性,樣本數,代表性樣點, | zh_TW |
| dc.subject.keyword | headwater catchment,time domain reflectometry (TDR),soil moisture,temporal stability,sample size,representative sample, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-07-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 8.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
