Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46267
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高照村(Jau-Tsuen Kao)
dc.contributor.authorYi-Shan Wongen
dc.contributor.author翁翊珊zh_TW
dc.date.accessioned2021-06-15T05:00:48Z-
dc.date.available2012-09-13
dc.date.copyright2010-09-13
dc.date.issued2010
dc.date.submitted2010-07-28
dc.identifier.citation1. Hokanson JE, Austin MA: Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. Journal of Cardiovascular Risk 1996, 3(2):213-219.
2. Jonkers IJ, Smelt AH, van der Laarse A: Hypertriglyceridemia: associated risks and effect of drug treatment. Am J Cardiovasc Drugs 2001, 1(6):455-466.
3. Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE: Genetic and Environmental Influences on Serum Lipid Levels in Twins. N Engl J Med 1993, 328(16):1150-1156.
4. Emi M, Wilson D, Iverius P, Wu L, Hata A, Hegele R, Williams R, Lalouel J: Missense mutation (Gly----Glu188) of human lipoprotein lipase imparting functional deficiency. J Biol Chem 1990, 265(10):5910-5916.
5. Jong MC, Hofker MH, Havekes LM: Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 1999, 19(3):472-484.
6. Hahn PF: Abolishment of alimentary lipemia following injection of heparin. Science 1943, 98(2531):19-20.
7. Korn ED: Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J Biol Chem 1955, 215(1):1-14.
8. Krauss RM, Windmueller HG, Levy RI, Fredrickson DS: Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. J Lipid Res 1973, 14(3):286-295.
9. Havel RJ, Gordon RS, Jr.: Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest 1960, 39:1777-1790.
10. Krauss RM, Windmueller HG, Levy RI, Fredrickson DS: Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. J Lipid Res 1973, 14(3):286-295.
11. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M: Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 1978, 298(23):1265-1273.
12. Sparkes RS, Zollman S, Klisak I, Kirchgessner TG, Komaromy MC, Mohandas T, Schotz MC, Lusis AJ: Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase to 15q21. Genomics 1987, 1(2):138-144.
13. Wion KL, Kirchgessner TG, Lusis AJ, Schotz MC, Lawn RM: Human lipoprotein lipase complementary DNA sequence. Science 1987, 235(4796):1638-1641.
14. Deeb SS, Peng RL: Structure of the human lipoprotein lipase gene. Biochemistry 1989, 28(10):4131-4135.
15. Wang CS, Hartsuck J, McConathy WJ: Structure and functional properties of lipoprotein lipase. Biochim Biophys Acta 1992, 1123(1):1-17.
16. Wong H, Davis RC, Thuren T, Goers JW, Nikazy J, Waite M, Schotz MC: Lipoprotein lipase domain function. J Biol Chem 1994, 269(14):10319-10323.
17. Braun JE, Severson DL: Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J 1992, 287 ( Pt 2):337-347.
18. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T: Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol 1990, 258(4 Pt 1):C673-681.
19. Bengtsson G, Olivecrona T: Interaction of lipoprotein lipase with heparin-Sepharose. Evaluation of conditions for affinity binding. Biochem J 1977, 167(1):109-119.
20. Eckel RH: Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 1989, 320(16):1060-1068.
21. Nilsson-Ehle P, Garfinkel AS, Schotz MC: Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem 1980, 49:667-693.
22. Vannier C, Ailhaud G: Biosynthesis of lipoprotein lipase in cultured mouse adipocytes. II. Processing, subunit assembly, and intracellular transport. J Biol Chem 1989, 264(22):13206-13216.
23. Wang CS, McConathy WJ, Kloer HU, Alaupovic P: Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 1985, 75(2):384-390.
24. Rensen PCN, van Berkel TJC: Apolipoprotein E Effectively Inhibits Lipoprotein Lipase-mediated Lipolysis of Chylomicron-like Triglyceride-rich Lipid Emulsions in Vitro and in Vivo. J Biol Chem 1996, 271(25):14791-14799.
25. Skottova N, Savonen R, Lookene A, Hultin M, Olivecrona G: Lipoprotein lipase enhances removal of chylomicrons and chylomicron remnants by the perfused rat liver. J Lipid Res 1995, 36(6):1334-1344.
26. Iverius PH, Ostlund-Lindqvist AM: Lipoprotein lipase from bovine milk. Isolation procedure, chemical characterization, and molecular weight analysis. J Biol Chem 1976, 251(24):7791-7795.
27. Elbein AD: Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. Faseb J 1991, 5(15):3055-3063.
28. Fuhrmann U, Bause E, Ploegh H: Inhibitors of oligosaccharide processing. Biochim Biophys Acta 1985, 825(2):95-110.
29. Rothman JE, Orci L: Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. Faseb J 1990, 4(5):1460-1468.
30. Busca R, Martinez M, Vilella E, Pognonec P, Deeb S, Auwerx J, Reina M, Vilaro S: The mutation Gly142-->Glu in human lipoprotein lipase produces a missorted protein that is diverted to lysosomes. J Biol Chem 1996, 271(4):2139-2146.
31. Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem 2000, 43(4):527-550.
32. Mangelsdorf DJ, Evans RM: The RXR heterodimers and orphan receptors. Cell 1995, 83(6):841-850.
33. A IJ, Jeannin E, Wahli W, Desvergne B: Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem 1997, 272(32):20108-20117.
34. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W: Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996, 137(1):354-366.
35. Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999, 20(5):649-688.
36. Basu-Modak S, Braissant O, Escher P, Desvergne B, Honegger P, Wahli W: Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J Biol Chem 1999, 274(50):35881-35888.
37. Hansen JB, Zhang H, Rasmussen TH, Petersen RK, Flindt EN, Kristiansen K: Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. J Biol Chem 2001, 276(5):3175-3182.
38. Jehl-Pietri C, Bastie C, Gillot I, Luquet S, Grimaldi PA: Peroxisome-proliferator-activated receptor delta mediates the effects of long-chain fatty acids on post-confluent cell proliferation. Biochem J 2000, 350 Pt 1:93-98.
39. Schoonjans K, Staels B, Auwerx J: Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996, 37(5):907-925.
40. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J: PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. Embo J 1996, 15(19):5336-5348.
41. Langlois S, Deeb S, Brunzell JD, Kastelein JJ, Hayden MR: A major insertion accounts for a significant proportion of mutations underlying human lipoprotein lipase deficiency. Proc Natl Acad Sci U S A 1989, 86(3):948-952.
42. Murthy V, Julien P, Gagne C: Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther 1996, 70(2):101-135.
43. Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, Stengard J, Salomaa V, Vartiainen E, Boerwinkle E, Sing CF: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet 1998, 19(3):233-240.
44. Harlan WR, Jr., Winesett PS, Wasserman AJ: Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridemia and the relationship of this enzyme to assimilation of fat. J Clin Invest 1967, 46(2):239-247.
45. Fruchart JC, Brewer HB, Jr., Leitersdorf E: Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 1998, 81(7):912-917.
46. Zimetbaum P, Frishman WH, Kahn S: Effects of gemfibrozil and other fibric acid derivatives on blood lipids and lipoproteins. J Clin Pharmacol 1991, 31(1):25-37.
47. Fruchart JC, Staels B, Duriez P: The role of fibric acids in atherosclerosis. Curr Atheroscler Rep 2001, 3(1):83-92.
48. Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, de Faire U: Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996, 347(9005):849-853.
49. Turay J, Grniakova V, Valka J: Changes in paraoxonase and apolipoprotein A-I, B, C-III and E in subjects with combined familiar hyperlipoproteinemia treated with ciprofibrate. Drugs Exp Clin Res 2000, 26(3):83-88.
50. Raslova K, Dobiasova M, Nagyova A, Fabry R, Rauchova H, Dusinska M: Ciprofibrate treatment in patients with atherogenic lipoprotein phenotype: effects on HDL quality, LDL susceptibility to oxidation and DNA damage. Eur J Clin Pharmacol 1998, 54(9-10):697-699.
51. Turpin G, Bruckert E: Efficacy and safety of ciprofibrate in hyperlipoproteinaemias. Atherosclerosis 1996, 124 Suppl:S83-87.
52. Despres JP: Increasing high-density lipoprotein cholesterol: an update on fenofibrate. Am J Cardiol 2001, 88(12A):30N-36N.
53. Guay DR: Micronized fenofibrate: a new fibric acid hypolipidemic agent. Ann Pharmacother 1999, 33(10):1083-1103.
54. Olsson AG, Rossner S, Walldius G, Carlson LA: Effect of gemfibrozil on lipoprotein concentrations in different types of hyperlipoproteinaemia. Proc R Soc Med 1976, 69 Suppl 2:29-31.
55. Antunes LM, Darin JD, Bianchi Nde L: Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res 2001, 43(2):145-150.
56. Moragoda L, Jaszewski R, Majumdar AP: Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res 2001, 21(2A):873-878.
57. Soni KB, Kuttan R: Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 1992, 36(4):273-275.
58. Asai A, Miyazawa T: Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr 2001, 131(11):2932-2935.
59. Chu CY, Tsai YY, Wang CJ, Lin WL, Tseng TH: Induction of apoptosis by esculetin in human leukemia cells. Eur J Pharmacol 2001, 416(1-2):25-32.
60. Lin WL, Wang CJ, Tsai YY, Liu CL, Hwang JM, Tseng TH: Inhibitory effect of esculetin on oxidative damage induced by t-butyl hydroperoxide in rat liver. Arch Toxicol 2000, 74(8):467-472.
61. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K et al: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444(7117):337-342.
62. Potenz R, Lo J-Y, Zsigmond E, Smith LC, Chan L: Human Lipoprotein Lipase: Production in Vitro, Purification, and Generation of Polyclonal Antibody Methods In Enzymology 1996, 263:319-326.
63. Feliciello I, Chinali G: A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli. Anal Biochem 1993, 212(2):394-401.
64. Joly E: Preparation of plasmid DNA using alkaline lysis. Methods Mol Biol 1996, 58:257-263.
65. Higuchi R, Krummel B, Saiki RK: A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 1988, 16(15):7351-7367.
66. Tietz textbook of clinical chemistry. 1999, Third edition:850-851.
67. Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, Majd Z, Brewer B, Pennacchio LA, Fruchart JC: Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun 2004, 319(2):397-404.
68. Iannelli P, Zarrilli V, Varricchio E, Tramontano D, Mancini FP: The dietary antioxidant resveratrol affects redox changes of PPAR[alpha] activity. Nutrition, Metabolism and Cardiovascular Diseases 2007, 17(4):247-256.
69. Floyd ZE, Wang ZQ, Kilroy G, Cefalu WT: Modulation of peroxisome proliferator-activated receptor [gamma] stability and transcriptional activity in adipocytes by resveratrol. Metabolism 2008, 57(Supplement 1):S32-S38.
70. Ge H, Zhang J-f, Guo B-s, He Q, Wang B-y, He B, Wang C-q: Resveratrol inhibits macrophage expression of EMMPRIN by activating PPAR[gamma]. Vascular Pharmacology 2007, 46(2):114-121.
71. Kirchgessner TG, Chuat JC, Heinzmann C, Etienne J, Guilhot S, Svenson K, Ameis D, Pilon C, d'Auriol L, Andalibi A et al: Organization of the human lipoprotein lipase gene and evolution of the lipase gene family. Proc Natl Acad Sci U S A 1989, 86(24):9647-9651.
72. Faustinella F, Chang A, Van Biervliet JP, Rosseneu M, Vinaimont N, Smith LC, Chen SH, Chan L: Catalytic triad residue mutation (Asp156----Gly) causing familial lipoprotein lipase deficiency. Co-inheritance with a nonsense mutation (Ser447----Ter) in a Turkish family. J Biol Chem 1991, 266(22):14418-14424.
73. Emmerich J, Beg OU, Peterson J, Previato L, Brunzell JD, Brewer HB, Jr., Santamarina-Fojo S: Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser-132, Asp-156, and His-241. J Biol Chem 1992, 267(6):4161-4165.
74. Faustinella F, Smith LC, Chan L: Functional topology of a surface loop shielding the catalytic center in lipoprotein lipase. Biochemistry 1992, 31(32):7219-7223.
75. van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C: Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. J Biol Chem 1994, 269(6):4626-4633.
76. Winkler FK, D'Arcy A, Hunziker W: Structure of human pancreatic lipase. Nature 1990, 343(6260):771-774.
77. Hide WA, Chan L, Li WH: Structure and evolution of the lipase superfamily. J Lipid Res 1992, 33(2):167-178.
78. Dugi KA, Dichek HL, Talley GD, Brewer HB, Jr., Santamarina-Fojo S: Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates. J Biol Chem 1992, 267(35):25086-25091.
79. Tashiro J, Kobayashi J, Shirai K, Saito Y, Nakamura H, Morimoto Y, Yoshida S: Trypsin treatment may impair the interfacial activation action of lipoprotein lipase. J Biochem (Tokyo) 1992, 111(4):509-514.
80. Henderson HE, Ma Y, Liu MS, Clark-Lewis I, Maeder DL, Kastelein JJ, Brunzell JD, Hayden MR: Structure-function relationships of lipoprotein lipase: mutation analysis and mutagenesis of the loop region. J Lipid Res 1993, 34(9):1593-1602.
81. Yang CY, Gu ZW, Yang HX, Rohde MF, Gotto AM, Jr., Pownall HJ: Structure of bovine milk lipoprotein lipase. J Biol Chem 1989, 264(28):16822-16827.
82. Davis RC, Wong H, Nikazy J, Wang K, Han Q, Schotz MC: Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties. J Biol Chem 1992, 267(30):21499-21504.
83. Dichek HL, Parrott C, Ronan R, Brunzell JD, Brewer HB, Jr., Santamarina-Fojo S: Functional characterization of a chimeric lipase genetically engineered from human lipoprotein lipase and human hepatic lipase. J Lipid Res 1993, 34(8):1393-1340.
84. Berryman DE, Bensadoun A: Site-directed mutagenesis of a putative heparin binding domain of avian lipoprotein lipase. J Biol Chem 1993, 268(5):3272-3276.

85. Hata A, Ridinger DN, Sutherland S, Emi M, Shuhua Z, Myers RL, Ren K, Cheng T, Inoue I, Wilson DE et al: Binding of lipoprotein lipase to heparin. Identification of five critical residues in two distinct segments of the amino-terminal domain. J Biol Chem 1993, 268(12):8447-8457.
86. Ma Y, Henderson HE, Liu MS, Zhang H, Forsythe IJ, Clarke-Lewis I, Hayden MR, Brunzell JD: Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase. J Lipid Res 1994, 35(11):2049-2059.
87. Semenkovich CF, Luo CC, Nakanishi MK, Chen SH, Smith LC, Chan L: In vitro expression and site-specific mutagenesis of the cloned human lipoprotein lipase gene. Potential N-linked glycosylation site asparagine 43 is important for both enzyme activity and secretion. J Biol Chem 1990, 265(10):5429-5433.
88. Ben-Zeev O, Stahnke G, Liu G, Davis RC, Doolittle MH: Lipoprotein lipase and hepatic lipase: the role of asparagine-linked glycosylation in the expression of a functional enzyme. J Lipid Res 1994, 35(9):1511-1523.
89. Busca R, Pujana MA, Pognonec P, Auwerx J, Deeb SS, Reina M, Vilaro S: Absence of N-glycosylation at asparagine 43 in human lipoprotein lipase induces its accumulation in the rough endoplasmic reticulum and alters this cellular compartment. J Lipid Res 1995, 36(5):939-951.
90. Wong H, Davis RC, Nikazy J, Seebart KE, Schotz MC: Domain exchange: characterization of a chimeric lipase of hepatic lipase and lipoprotein lipase. Proc Natl Acad Sci U S A 1991, 88(24):11290-11294.
91. Lookene A, Bengtsson-Olivecrona G: Chymotryptic cleavage of lipoprotein lipase. Identification of cleavage sites and functional studies of the truncated molecule. Eur J Biochem 1993, 213(1):185-194.
92. Williams KJ, Fless GM, Petrie KA, Snyder ML, Brocia RW, Swenson TL: Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem 1992, 267(19):13284-13292.
93. Al-Haideri M, Granot E, Schwiegelshoh B, Vogel T, Gorecki M, Goldberg IJ, Deckelbaum RJ: Apoprotein E simulates non receptor triglyceride-rich particle cellular uptake. Circulation 1993, 88:1-321.

94. Nykjaer A, Bengtsson-Olivecrona G, Lookene A, Moestrup SK, Petersen CM, Weber W, Beisiegel U, Gliemann J: The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J Biol Chem 1993, 268(20):15048-15055.
95. Zhang H, Krapp A, Ma Y, Ginzinger D, Beisiegel U, Hayden MR: In vitro mutagenesis studies defining residues of lipoprotein lipase critical for mediation of the binding of lipoproteins to the LDL receptor-related protein (LRP). Atherosclerosis 1994, 109(1-2):66.
96. Bruin T, Appelman EE, Blanchard H, Groat NR, Knstelein JJP, Derewenda ZS: The role of proline residues in the structure and function of lipoprotein lipase. . Atherosclerosis (1994a), 109:63.
97. Chia-Tung Yu, Jau-Tsuen Kao,Site-directed Mutagenesis (Leu252 -> Arg, Leu252 ->Val) of Human Lipoprotein lipase.1997
98. Martin Merkel,* Yuko Kako,† Herbert Radner,‡ Irene S. Cho,* Ravi Ramasamy,† John D. Brunzell,§ Ira J. Goldberg,† and Jan L. Breslow :Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: Direct evidence that lipoprotein lipase bridging occurs in vivo. Proc Natl Acad Sci U S A. 1998 November 10; 95(23): 13841–13846.
99. Yasuyuki Ikedaa, Atsuko Takagib, Yuusei Nakatac, Yasuhiko Serac, Sumio Hyoudouc, Kazuko Hamamotoc, Yoshikazu Nishic, and Akira Yamamotod Novel compound heterozygous mutations for lipoprotein lipase deficiency: a G-to-T transversion at the first position of exon 5 causing G154V missense mutation and a 5' splice site mutation of intron 8 . Journal of Lipid Research, Vol. 42, 1072-1081, July 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46267-
dc.description.abstract脂蛋白解脂酶(LPL) 在脂質代謝方面佔有重要的角色,其主要的功能在於水解乳麋微粒和極低密度脂蛋白中的三酸甘油脂。LPL位於人類第八條染色體上,全長約30kb,包含十個exon和九個intron,LPL可以在許多組織中被合成,如脂肪組織,骨骼肌,腦及腎臟。製造出的LPL會被分泌到附近微血管,與血管壁細胞表面的HSPG結合藉以附著在微血管壁上,經由脂蛋白元CII的活化,水解乳糜微粒和極低密度脂蛋白中的三酸甘油脂,分解形成游離脂肪酸和甘油,前者可燃燒做為能量使用,或以脂質形式儲存。
LPL的缺乏常因於基因的缺陷導致,包括基因重組,插入或刪除,但大部份是胺基酸被取代造成的。LPL功能異常與臨床上的許多症狀有直接或間接關係包括,高三酸甘油脂,心血管疾病,胰臟炎和動脈硬化等。
由過去實驗室的研究結果,得知高三酸甘油脂血症病人身上找到兩種脂蛋白解脂酶基因點突變,皆位於表現子六上,分別是cDNA序列中的核苷酸由C變成G和由T變成G,都牽涉到脂蛋白解脂酶第252位置胺基酸的突變,分別突變成Val和Arg。基於此發現,實驗室利用體外定點突變方式,建構出以T7為promoter的野生型與LPL第252位置胺基酸的突變型:Leu252Val和Leu252Arg,並轉染入HEK293進行表現。在活性和表現量方面皆有明顯下降,僅有不到10%野生型的表現量。由此可推測Leu252在脂蛋白解脂酶功能上佔有重要的角色,並推測該變異應該和脂蛋白解脂酶的結構維持有著一定程度的關連性。
於是利用胺基酸定點突變在第252位置建構出其他17種胺基酸置換的衍生種轉染入HEK293細胞中進行表現。另外,為了能模擬人體內的LPL表現,以含human promoter的LPL野生型質體建構出另外19種胺基酸,於HEK293細胞進行表現,希望找到一種高度表現的脂蛋白解脂酶。依序將含有T7 promoter和human promoter的野生型和突變型質體做了細胞表現,偵測出19種L252突變型的LPL活性均遠低於野生型的活性。於T7 promoter作表現的脂蛋白解脂酶變異型的蛋白活性,於細胞培養液中偵測,均只有野生型的10%,細胞溶解物中也測出相似的趨勢。另外,以human promoter作表現的LPL變異型蛋白活性,在細胞培養液中,也只偵測到野生型蛋白活性的一半。
雖然在本實驗中並沒有發現一種LPL高活性的突變型,卻也因此再次證明L252在LPL蛋白活性中扮演重要的角色。
zh_TW
dc.description.abstractLipoprotein lipase(LPL) gene is located on human chromosome 8. The human LPL comprises 10 exons and 9 introns spanning about 30 kb. LPL is synthesized from many tissues such as adipose tissue, skeletal muscle, brain, and so on. With activation by apoCII , LPL catalyzes hydrolysis of triglycerol(TG) from chylomicron and VLDL to free fatty acid and glycerol. High TG, obesity, coronary heart disease, pancreatitis and atherosclerosis, appear to be related to LPL. The deficient LPL gene including rearrangement, insertion, deletion or amino acid substation always influences the amount or activity of LPL. Amino acid substitute is the main reason.
In our previous study, two types of LPL gene mutation in exon 6 from high TG patients were found the cDNA nucleotide change from C to G and from T to G. These mutations change Leu to Val and Leu to Arg, respectively. The LPL activity from both mutants decreased dramatically. We supposed that Leu252 plays an important role on LPL function. In order to find a high expression of LPL, plasmids containing T7 promoter of LPL cDNA with 20 different amino acids at residue 252 were constructed, and expressed in HEK293 cell. The LPL activity was less than 10% of that of wild type for both of L252R and L252V. In order to simulate human LPL gene structure, we constructed the others 19 mutagenesis which included human promoter, and expressed in HEK293. The LPL activity of these 19 mutagenesis were lower than that of wild type. This may suggest that the importance of 252L, and any mutation will decrease its hydrolysis activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:00:48Z (GMT). No. of bitstreams: 1
ntu-99-R97424021-1.pdf: 1693824 bytes, checksum: 40523a998f07eb71eda1d8531e8c68a1 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents總目次
總目次…………………………………………………………………………I
圖目次…………………………………………………………………………III
表目次…………………………………………………………………………III
附錄目次………………………………………………………………………III
簡稱或縮寫表…………………………………………………………………IV
中文摘要………………………………………………………………………VI
英文摘要………………………………………………………………………VIII
第一章 導論
第一節 前言…………………………………………………………1
第二節 高三酸甘油脂血症…………………………………………1
第三節 脂蛋白解脂酶的發現………………………………………2
第四節 脂蛋白解脂酶的基因構造…………………………………2
第五節 脂蛋白解脂酶的基本特性…………………………………3
第六節 脂蛋白解脂酶的分泌機轉…………………………………4
第七節 細胞內的訊息傳遞…………………………………………5
第八節 脂蛋白解脂酶的基因缺陷…………………………………5
第九節 脂蛋白解脂酶缺乏的臨床症狀……………………………6
第十節 高脂血症的治療……………………………………………6
第十一節 研究動機……………………………………………………7

第二章 實驗材料與方法
第一節 儀器設備……………………………………………………8
第二節 試藥、試劑組與材料………………………………………9
第三節 實驗方法……………………………………………………12
第三章 實驗結果
第一節 質體突變型確認……………………………………………17
第二節 人類脂蛋白解脂酶的表現…………………………………17
第三節 L252野生型與變異型對脂蛋白解脂酶活性影響…………18
第四章 討論……………………………………………………………… 19
附表……………………………………………………………………………30
附錄……………………………………………………………………………36
參考文獻………………………………………………………………………50




圖目次
圖1:以EcoRV確認二十種L252基因……………………………………………………22
圖2: 以EcoRI確認二十種PL252基因型…………………………………………………23
圖3:L252直接定序,為人類脂蛋白解脂酶第252個胺基酸定點突變結果……………24
圖4:PLPL直接定序,為人類脂蛋白解脂酶第252個胺基酸定點突變結果……………25
圖5:L252 large preparation………………………………..………………………………26
圖6: PLPL large preparation…………………………………...……………………………27
圖7:L252野生型與十九種胺基酸突變型脂蛋白解脂酶活性分析………………………28
圖8:PLPL野生型與十九種胺基酸突變型脂蛋白解脂酶活性分析……………………29
表目次
表一:世界衛生組織對高脂血症分類………………………………………30
表二:人類脂蛋白解脂酶的組成……………………………………………31
表三:人類脂蛋白解脂酶之功能與結構……………………………………33
表四:實驗過程中所需之寡核酸引子列……………………………………35
附錄目次
附錄一:定位點突變……………………………………………….……………36
附錄二:L252示意圖……………………………………………………………37
附錄三:PL252示意圖…………………………………………….….…………38
附錄一:實驗流程…………………………………………………….…………39
dc.language.isozh-TW
dc.title變異脂蛋白解脂酶之研究zh_TW
dc.titleFunctional studies of mutant lipoprotein lipaseen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林淑華(Shu-Wha Lin),謝絹珠(June-Hsieh Wu),江福田(Fu-Tien Chiang)
dc.subject.keyword脂蛋白解脂&#37238,zh_TW
dc.subject.keywordlipoprotein lipase,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2010-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved