請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章(Wen-Chang Chen),黃慶怡(Ching-I Huang) | |
| dc.contributor.author | Zong-Hua Yu | en |
| dc.contributor.author | 余宗樺 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:00:41Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | 1. Serap, G.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107, 1324-1338.
2. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Mark, R. N.; Mackay, K.; Friend, R. N.; Burn, P. L.; Holmes, A. B. Light-Emitting Diodes Based on Conjugated Polymers. Nature 1990, 347, 539-541. 3. Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; Van Hal, P. A.; Janssen, R. A. J. Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells. Angew. Chem. Int. Ed. 2003, 42, 3371-3375. 4. Bao, Z.; Reese, C.; Roberts, M.; Ling, M. M. Organic Thin Film Transistors. Mater. Today 2004, 7, 20-27. 5. Liang, S. D.; Bai, Y. H.; Beng, B. Peierls Instability and Persistent Current in Mesoscopic Conducting Polymer Rings. Phys. Rev. B: Condens. Matter 2006, 74, 113304. 6. Chiang, C. K.; Fincher, C.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G. Electrical-Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977, 39, 1098-1101. 7. Heeger, A. J. Semiconducting and Metallic Polymers:The Fourth Generation of Polymeric Materials (Nobel Lecture)**. Angew. Chem. Int. Ed. 2001, 40, 2591-2611. 8. Chiang, J. C.; MacDiarmid, A. G.; Polyaniline:Protonic Acid Doping of the Emeraldine Form to the Metallic Regime. Synth. Met. 1986, 13, 193-205. 9. Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. Electrochemical Polymerization of Pyrrole. J. Chem. Soc. Chem. Commun. 1979, 635-636. 10. Diaz, A. F.; Martinez, A.; Kanazawa, K. K. Electrochemistry of Some Substituted Pyrroles. J. Electroanal. Chem. 1981, 130, 181-187. 11. Kanazawa, K. K.; Diaz, A. F.; Krounbi, M. T. Street, G. B. Electrical Properties of Pyrrole and its Copolymers. Synth. Met. 1981, 4, 119-130. 12. Tourillon, G.; GAarnier, F. New Electrochemically Generated Organic Conducting Polymers. J. Electroanal Chem. 1982, 135, 173-178. 13. Waltman, R. J.; Bargon, J.; Diaz, A. F. Electrochemical Studies of Some Conducting Polythiophene Films. J. Phys. Chem. 1983, 87, 1459-1463. 14. McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L. Design, Synthesis, and Control of Conducting Polymer Architectures: Structurally Homogeneous Poly(3-alkylthiophenes). J. Org. Chem. 1993, 58, 904-912. 15. Kim, J. S.; Seo, B.W.; Gu, H. B. Exciplex Emission and Energy Transfer in White Light-Emitting Organic Electroluminescent Device. Synth. Met. 2003, 132, 285-288. 16. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. J. Am. Chem. Soc. 2004, 126, 3378-3379. 17. Kunjithapatham, S.; Shizuyasu, O.; Kenzo, K.; Teruyoshi, M. Performance of Poly(3-hexylthiophene) Organic Field-Effect Transistors on Cross-Linked Poly(4-vinyl phenol) Dielectric Layer and Solvent Effects. Appl. Phys. Lett. 2008, 92, 183302. 18. Yang, P.; Zhou, X.; Cao, G.; Luscombe, C. K. P3HT:PCBM Polymer Solar Cells with TiO2 Nanotube Aggregates in the Active Layer. J. Mater. Chem. 2010, 20, 2612-2616. 19. McCullough, R. D. The Chemistry of Conducting Polythiophenes. Adv. Mater. 1998, 10, 93-116. 20. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; De Leeuw, D. M. Two-Dimensional Charge Transport in Self-Organized, High-Mobility Conjugated Polymers. Nature 1999, 401, 685-688. 21. Verilhac, J. M.; LeBlevennec, G.; Djurado, D.; Rieutord, F.; Mustapha, C.; Travers, J. P.; Pron, A. Effect of Macromolecular Parameters and Processing Conditions on Supramolecular Organisation, Morphology and Electrical Transport Properties in Thin Layers of Regioregular Poly(3-hexylthiophene). Synth. Met. 2006, 156, 815-823. 22. Gamier, F.; Yassar, A,; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Serve, B.; Ries, S.; Alnott,P. Molecular Engineering of Organic Semiconductors: Design of Self-Assembly Properties in Conjugated Thiophene Oligomers. J. Am. Chem. Soc. 1993, 115, 8716-8721. 23. Zhang, R.; Li, B.; Iovu, M. C.; Jeffries, M. E. L.; Sauvé, G.; Cooper, J.; Jia, S.; Nagle, S. T.; Smilgies, D. M.; Lambeth, D. N.; McCullough, R. D.; Kowalewski, T. Nanostructure Dependence of Field-Effect Mobility in Regioregular Poly(3-hexylthiophene) Thin Film Field Effect Transistors. J. Am. Chem. Soc. 2006, 128, 3480-3481. 24. Zen, A.; Saphiannikova, M.; Neher, D.; Grenzer, J.; Grigorian, S.; Pietsch, U.; Asawapirom, U.; Janietz, S.; Scherf, U.; Lieberwirth, I.; Wegner, G. Effect of Molecular Weight on the Structure and Crystallinity of Poly(3-hexylthiophene). Macromolecules 2006, 39, 2162-2171. 25. Brinkmann, M.; Rannou, P. Effect of Molecular Weight on the Structure and Morphology of Oriented Thin Films of Regioregular Poly(3-hexylthiophene) Grown by Directional Epitaxial Solidification. Adv. Funct. Mater. 2007, 17, 101-108. 26. Kwong, C. Y.; Djurisic, A. B.; Chuia, P. C.; Cheng, K. W.; Chan, W. K. Influence of Solvent on Film Morphology and Device Performance of Poly(3-hexylthiophene):TiO2 Nanocomposite Solar Cells. Chem. Phys. Lett. 2004, 384, 372-375. 27. Chang, J. F.; Sun, B.; Breiby, D. W.; Nielsen, M. M.; So¨lling, T. I.; Giles, M.; McCulloch, I. Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. Chem. Phys. Lett. 2004, 16, 4772-4776. 28. Surin, M.; Leclère, Ph.; Lazzaroni, R.; Yuen, J. D.; Wang, G.; Moses, D.; Heeger, A. J.; Chob, S.; Leeb, K. Relationship between the Microscopic Morphology and the Charge Transport Properties in Poly(3-hexylthiophene) Field-Effect Transistors. J. Appl. Phys. 2006, 100, 033712. 29. Kim, D. H.; Park, Y. D.; Jang, Y.; Yang, H.; Kim, Y. H.; Han, J. I.; Moon, D. G.; Park, S.; Chang, T.; Chang, C.; Joo, M.; Ryu, C. Y.; Cho, K. Enhancement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors. Adv. Funct. Mater. 2005, 15, 77-82. 30. Kim, D. H.; Jang, Y.; Park, Y. D.; Cho, K. Surface-Induced Conformational Changes in Poly(3-hexylthiophene) Monolayer Films. Langmuir 2005, 21, 3203-3206. 31. Kline, R. J.; Mcgefee, M.D.; Toney, M. F. Highly Oriented Crystals at the Buried Interface in Polythiophene Thin-Film Transistors. Nat. Mater. 2006, 5, 222-228. 32. Bhatia, V.; Gupta, A. D.; Kabra, A. D.; Narayan, K. S. Optical and Electrical Features of Surface Ordered Regioregular Polyhexylthiophene. J. Mater. Sci.- Mater. Electron. 2007, 18, 925-930. 33. Lan, Y. K.; Huang, C. I. A Theoretical Study of the Charge Transfer Behavior of the Highly Regioregular Poly-3-hexylthiophene in the Ordered State. J. Phys. Chem. B. 2008, 112, 14857-14862. 34. Lan, Y. K.; Huang, C. I. Charge Mobility and Transport Behavior in the Ordered and Disordered States of the Regioregular Poly(3-hexylthiophene). Phys. Chem. B. 2009, 113, 14555-14564. 35. 葉沛宏, 有機奈米層/鋁電極結構於高效率高分子太陽能電池之研究. 國立成功大學 光電科學與工程研究所 碩士論文, 2007. 36. 陳志平, 高分子有機太陽能電池技術發展概況, 工研院材化所, 2008, 262. 37. Ameri,T.; Dennler, G.; Lungenschmied, C.; Brabec, C. J. Organic tandem solar cells: A review. Energy. Environ. Sci. 2009, 2, 347-363. 38. Yu, G.; Gao, J.; Hummelen, J. C.; Wudi, F.; Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789-1791. 39. Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. 2.5% Efficient Organic Plastic Solar Cells. Appl. Phys. Lett. 2001, 78, 841-843. 40. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Effects of Postproduction Treatment on Plastic Solar Cells. Adv. Funct. Mater. 2003, 13, 85-88. 41. Koster, L. J. A.; Mihailetchi, V. D.; Blom, P. W. M. Ultimate Efficiency of Polymer/Fullrene Bulk Heterojunction Solar Cell. Appl, Phys. Lett. 2006, 88, 093511. 42. Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Design Rules for Donors in Bulk-Heterojunction Solar Cells - Towards 10 % Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789-794. 43. Chen, C. P.; Yu, C. Y.; Ko, B. T.; Ting, C. Two-Dimensional Regioregular Polythiophenes with Conjugated Side Chains for Use in Organic Solar Cells. Sol. Energy Mater. Sol. Cells. 2009, 93, 613-620. 44. Chang, Y. T.; Hsu, S. L.; Chen, G. Y.; Su, M. H.; Singh, T. A.; Diau, E. W. G.; Wei, K.H. Soluble Phenanthrenyl-Imidazole-Presenting Regioregular Poly(3-octylthiophene) Copolymers Having Tunable Bandgaps for Solar Cell Applications. Adv. Funct. Mater. 2007, 17, 3326-3331. 45. Chang, Y. T.; Hsu, S. L.; Su, M.H.; Wei, K.H. Intramolecular Donor–Acceptor Regioregular Poly(3-hexylthiophene)s Presenting Octylphenanthrenyl- Imidazole Moieties Exhibit Enhanced Charge Transfer for Heterojunction Solar Cell Applications. Adv. Funct. Mater. 2008, 18, 2356-2365. 46. Chang, Y. T.; Hsu, S. L.; Su, M.H.; Wei, K.H. Intramolecular Donor–Acceptor Regioregular Poly(hexylphenanthrenyl-imidazole thiophene) Exhibits Enhanced Hole Mobility for Heterojunction Solar Cell Applications. Adv. Mater. 2009, 21, 2093-2097. 47. Blouin, N.; Michaud, A.; Leclerc, M. A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells. Adv. Mater. 2007, 19, 2295-2300. 48. Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. Low-Bandgap Poly(Thiophene-Phenylene-Thiophene) Derivatives with Broaden Absorption Spectra for Use in High-Performance Bulk-Heterojunction Polymer Solar Cells. J. Am. Chem. Soc. 2008, 130, 12828-12833. 49. Wienk, M. M.; Turbiez, M.; Gilot, J.; Janssen, R. A. J. Narrow-Bandgap Diketo-Pyrrolo-Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance. Adv. Mater. 2008, 20, 2556-2560. 50. Li, Y.; Hou, J.; Tan, Z.; Yan, Y.; He, Y.; Yang, C. Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains. J. Am. Chem. Soc. 2006, 128, 4911-4916. 51. Li, Y.; Zhou, E.; Tan, Z.; Huo, L.; He, Y.; Yang, C. Effect of Branched Conjugation Structure on the Optical, Electrochemical, Hole Mobility,and Photovoltaic Properties of Polythiophenes. J. Phys. Chem. B. 2006, 110, 26062-26067. 52. Li, Y.; Zou, Y.; Wu, W.; Sang, G.; Yang, Y.; Liu, Y.; Polythiophene Derivative with Phenothiazine-Vinylene Conjugated Side Chain: Synthesis and Its Application in Field-Effect Transistors. Macromolecules 2007, 40, 7231-7237. 53. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990, 94, 8897-8909. 54. Rappe, A. K.; Goddard, W. A. Charge Equilibration for Molecular Dynamics Simulations. J. Phys. Chem. 1991, 95, 3358-3363. 55. Coropceanu, V.; Cornil, J.; Filho, D. A. S.; Olivier, Y.; Silbey, R.; . Brédas, J.L. Charge Transport in Organic Semiconductors. Chem. Rev. 2007, 107, 926-952. 56. Deng, W. Q.; Goddard, W. A. Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations. J. Phys. Chem. B. 2004, 108, 8614-8621. 57. Marcus, R. A. Chemical and Electrochemical Electron-Transfer Theory. Annu. Rev. Phys. Chem. 1964, 15, 155-196. 58. Marcus, R. A. Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1993, 32, 1111-1121. 59. Liang, C.; Newton, M. D. Ab Initio Studies of Electron Transfer: Pathway Analysis of Effective Transfer Integrals. J. Phys. Chem. 1992, 96, 2855-2866. 60. Brédas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers: A Molecular Picture. Chem. Rev. 2004, 104, 4971-5003. 61. Bomana, M.; Stafströma, S. Interpretation of Anomalous Absorption Spectra. A Theoretical Study of the Geometric, Electronic and Optical Properties of Poly[3-(4-Octylphenyl)-Thiophene]. Mol. Cyst. Liq. Cryst. 1994, 256, 705-710. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46264 | - |
| dc.description.abstract | 我們利用分子動力學模擬以及量子力學計算,探討聚3-己烷噻吩( Poly(3-Hexylthiophene),P3HT)系統中側鏈上共軛噻吩環數目的增加,如何影響有序堆疊狀態下其分子鏈構形、堆疊排列情形以及載子遷移率,並且和P3HT系統做比較。本實驗所模擬的聚噻吩材料(A1~A4)都有著四種排列類型(Type I~ Type IV),我們都在Type II類型上發現到最低的能量以及規整的排列堆疊現象,隨著軛噻吩環數目的增加,主鏈與側鏈都各自有很規整的堆疊排列與共平面狀態。而我們發現主鏈噻吩環與側鏈噻吩環之間有著偏離共平面的扭轉情形,是由於主鏈側鏈噻吩間的凡得瓦斥力造成的立體效應所導致。在量子力學計算部分,我們會以分子鏈上及分子鏈間這兩個不同的電荷傳遞方向來進行分析,探討載子遷移率如何受到主側鏈扭轉角度分佈以及分子鏈間距離與錯位距離的影響。我們觀察到A1材料在分子鏈上的載子遷移率是低於P3HT的速率,但在分子鏈間系統則是有較高的現象,並且發現在A1材料中,載子沿著π-π堆疊方向的載子遷移率明顯低於沿主鏈方向的速率,因此,A1材料整體的載子遷移率是低於P3HT的速率,且載子的主要傳輸路徑是沿著主鏈的方向而非沿鏈間的方向,這與P3HT的載子遷移率有著相同的結果。 | zh_TW |
| dc.description.abstract | We use molecular dynamics and quantum mechanical calculations to explore the system of Poly (3-Hexylthiophene) P3HT which contains different numbers of side chain thiophenes. We compare our system and P3HT system with respect to the conformations of polymer chains, stacking, and charge mobility. In this study, there are four types, type I~ Type IV , in different materials, A1~A4. We found all the Type II have the lowest energy and regular stacking. As the numbers of thiophenes increase, both main chain and side chain have regular arrangement and maintain obviously coplanar conformation. We found main chain and the side chain deviates from their initial coplanar plane. This is due to steric repulsion arose from Van der Waals interaction. In quantum mechanical calculations, we discuss the charge mobility in different directions along intrachains and interchain. Main chain and side chain torsion angle distribution, interchain distance, and shift distance are all variables to effect the charge mobility. We observe that the hole mobility of A1 is less in intrachain but higher in interchain than the hole mobility of P3HT. We also found that hole mobility along intrachain extremely higher than in interchain. The result that the charge transfer route is along the intrachain instead of interchain is the same as P3HT
elucidate that the hole mobility of A1 is less than P3HT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:00:41Z (GMT). No. of bitstreams: 1 ntu-100-R98549031-1.pdf: 5071178 bytes, checksum: 55483d419f3274b0c3efd3931bb1f092 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 V 表目錄 VIII 一、前言 1 二、模擬方法及系統參數 12 2.1分子動力學模擬 ……..13 2.1.1勢能函數 13 2.1.2電荷平衡法 15 2.1.3 系統介紹與起始堆疊尺度的決定 17 2.1.4 升溫退火與動態模擬 22 2.1.5 運用Monte Carlo模擬方法分析噻吩環彼此最常出現的吸引位向 23 2.2量子力學計算 24 2.2.1 Einstein relation 24 2.2.2 Marcus theory 25 2.3.3 Reorganization Energy 26 2.2.4 Transfer Integral 27 2.2.5高斯函數 28 2.2.6 量子力學計算的系統及流程 29 三、結果與討論 33 3.1 探討A1材料四種排列方式之構型與排列型態 33 3.2 隨著共軛側鏈噻吩環數的增加(A1、A2、A3、A4)其分子鏈構形與堆積排列型態的變化比較 43 3.3 A1材料的電荷傳遞行為研究以及和P3HT系統的比較 50 四、結論 56 五、參考文獻 58 六、附錄 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分子鏈間 | zh_TW |
| dc.subject | 聚3-己烷噻 | zh_TW |
| dc.subject | 吩 | zh_TW |
| dc.subject | 主側鏈噻 | zh_TW |
| dc.subject | 吩環 | zh_TW |
| dc.subject | 分子鏈上 | zh_TW |
| dc.subject | Main and Side chain thiophene | en |
| dc.subject | Intra and Inter chain | en |
| dc.subject | P3HT | en |
| dc.title | 利用分子動力學模擬及量子力學計算探討聚噻吩高分子中改變側鏈噻吩環數對於分子鏈構形、堆疊排列以及電荷傳遞性質的影響 | zh_TW |
| dc.title | Molecular Conformation, Packing Structure, and Charge Transfer Behavior of Poly (3-Hexylthiophene)-based Materials Via Molecular Dynamics simulations and Quantum Mechanical Calculations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王立義(Lee-Yih Wang) | |
| dc.subject.keyword | 聚3-己烷噻,吩,主側鏈噻,吩環,分子鏈上,分子鏈間, | zh_TW |
| dc.subject.keyword | P3HT,Main and Side chain thiophene,Intra and Inter chain, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
