請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46260
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳美如 | |
dc.contributor.author | Ya-Ting Wang | en |
dc.contributor.author | 王雅葶 | zh_TW |
dc.date.accessioned | 2021-06-15T05:00:28Z | - |
dc.date.available | 2020-12-31 | |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-28 | |
dc.identifier.citation | Bai, L. & Merchant, J. L. (2000). Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells. J Biol Chem 275, 30725-30733.
Baumann, M., Feederle, R., Kremmer, E. & Hammerschmidt, W. (1999). Cellular transcription factors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. EMBO J 18, 6095-6105. Burke, A. P., Yen, T. S., Shekitka, K. M. & Sobin, L. H. (1990). Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol 3, 377-380. Chan, S. R. & Chandran, B. (2000). Characterization of human herpesvirus 8 ORF59 protein (PF-8) and mapping of the processivity and viral DNA polymerase-interacting domains. J Virol 74, 10920-10929. Chang, C. K. & Balachandran, N. (1991). Identification, characterization, and sequence analysis of a cDNA encoding a phosphoprotein of human herpesvirus 6. J Virol 65, 7085. Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y. & Tsai, C. H. (1999). Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857-8866. Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchison, C. A., 3rd, Kouzarides, T., Martignetti, J. A. & et al. (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125-169. Chen, C. & Okayama, H. (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7, 2745-2752. Chen, M. R., Chang, S. J., Huang, H. & Chen, J. Y. (2000). A protein kinase activity associated with Epstein-Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74, 3093-3104. Chen, Y. L., Chen, Y. J., Tsai, W. H., Ko, Y. C., Chen, J. Y. & Lin, S. F. (2009). The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8, 58-65. Chiou, J. F., Li, J. K. & Cheng, Y. C. (1985). Demonstration of a stimulatory protein for virus-specified DNA polymerase in phorbol ester-treated Epstein-Barr virus-carrying cells. Proc Natl Acad Sci U S A 82, 5728-5731. Chiu, Y. F., Tung, C. P., Lee, Y. H., Wang, W. H., Li, C., Hung, J. Y., Wang, C. Y., Kawaguchi, Y. & Liu, S. T. (2007). A comprehensive library of mutations of Epstein Barr virus. J Gen Virol 88, 2463-2472. Cho, M. S., Milman, G. & Hayward, S. D. (1985). A second Epstein-Barr virus early antigen gene in BamHI fragment M encodes a 48- to 50-kilodalton nuclear protein. J Virol 56, 860-866. Chua, H. H., Lee, H. H., Chang, S. S., Lu, C. C., Yeh, T. H., Hsu, T. Y., Cheng, T. H., Cheng, J. T., Chen, M. R. & Tsai, C. H. (2007). Role of the TSG101 gene in Epstein-Barr virus late gene transcription. J Virol 81, 2459-2471. Daibata, M. & Sairenji, T. (1993). Epstein-Barr virus (EBV) replication and expressions of EA-D (BMRF1 gene product), virus-specific deoxyribonuclease, and DNA polymerase in EBV-activated Akata cells. Virology 196, 900-904. Daikoku, T., Kudoh, A., Fujita, M., Sugaya, Y., Isomura, H., Shirata, N. & Tsurumi, T. (2005). Architecture of replication compartments formed during Epstein-Barr virus lytic replication. J Virol 79, 3409-3418. de Jesus, D. S., Couto, C. M., Araujo, A. N. & Montenegro, M. C. (2003). Amperometric biosensor based on monoamine oxidase (MAO) immobilized in sol-gel film for benzydamine determination in pharmaceuticals. J Pharm Biomed Anal 33, 983-990. Delecluse, H. J., Hilsendegen, T., Pich, D., Zeidler, R. & Hammerschmidt, W. (1998). Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95, 8245-8250. Ellison, V. & Stillman, B. (2001). Opening of the clamp: an intimate view of an ATP-driven biological machine. Cell 106, 655-660. Epstein, M. A., Achong, B. G. & Barr, Y. M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1, 702-703. Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., Golenbock, D. T., Coyle, A. J., Liao, S. M. & Maniatis, T. (2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4, 491-496. Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1992). trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66, 5030-5039. Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1995). Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69, 2998-3006. Fujii, K., Yokoyama, N., Kiyono, T., Kuzushima, K., Homma, M., Nishiyama, Y., Fujita, M. & Tsurumi, T. (2000). The Epstein-Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. J Virol 74, 2550-2557. Gao, Z., Krithivas, A., Finan, J. E., Semmes, O. J., Zhou, S., Wang, Y. & Hayward, S. D. (1998). The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 72, 8559-8567. Gershburg, E. & Pagano, J. S. (2002). Phosphorylation of the Epstein-Barr virus (EBV) DNA polymerase processivity factor EA-D by the EBV-encoded protein kinase and effects of the L-riboside benzimidazole 1263W94. J Virol 76, 998-1003. Gershburg, E., Raffa, S., Torrisi, M. R. & Pagano, J. S. (2007). Epstein-Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol 81, 5407-5412. Gibson, W., Murphy, T. L. & Roby, C. (1981). Cytomegalovirus-infected cells contain a DNA-binding protein. Virology 111, 251-262. Gottlieb, J., Marcy, A. I., Coen, D. M. & Challberg, M. D. (1990). The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. J Virol 64, 5976-5987. Hammerschmidt, W. & Sugden, B. (1988). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427-433. Henle, G., Henle, W. & Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59, 94-101. Holley-Guthrie, E. A., Seaman, W. T., Bhende, P., Merchant, J. L. & Kenney, S. C. (2005). The Epstein-Barr virus protein BMRF1 activates gastrin transcription. J Virol 79, 745-755. Hsu, T. Y., Chang, Y., Wang, P. W., Liu, M. Y., Chen, M. R., Chen, J. Y. & Tsai, C. H. (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86, 317-322. Kieff, E. & Rickinson, A. B. (2007). Epstein-Barr virus and its replication. Pa, Philadelphia: Lippincott-Raven. Krosky, P. M., Baek, M. C., Jahng, W. J., Barrera, I., Harvey, R. J., Biron, K. K., Coen, D. M. & Sethna, P. B. (2003). The human cytomegalovirus UL44 protein is a substrate for the UL97 protein kinase. J Virol 77, 7720-7727. Kudoh, A., Daikoku, T., Sugaya, Y., Isomura, H., Fujita, M., Kiyono, T., Nishiyama, Y. & Tsurumi, T. (2004). Inhibition of S-phase cyclin-dependent kinase activity blocks expression of Epstein-Barr virus immediate-early and early genes, preventing viral lytic replication. J Virol 78, 104-115. Kudoh, A., Fujita, M., Kiyono, T., Kuzushima, K., Sugaya, Y., Izuta, S., Nishiyama, Y. & Tsurumi, T. (2003). Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. J Virol 77, 851-861. Lee, C. P., Huang, Y. H., Lin, S. F., Chang, Y., Chang, Y. H., Takada, K. & Chen, M. R. (2008). Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol 82, 11913-11926. Lehman, I. R. & Boehmer, P. E. (1999). Replication of herpes simplex virus DNA. J Biol Chem 274, 28059-28062. Li, J. S., Zhou, B. S., Dutschman, G. E., Grill, S. P., Tan, R. S. & Cheng, Y. C. (1987). Association of Epstein-Barr virus early antigen diffuse component and virus-specified DNA polymerase activity. J Virol 61, 2947-2949. Liao, G., Huang, J., Fixman, E. D. & Hayward, S. D. (2005). The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J Virol 79, 245-256. Lin, K. & Ricciardi, R. P. (1998). The 41-kDa protein of human herpesvirus 6 specifically binds to viral DNA polymerase and greatly increases DNA synthesis. Virology 250, 210-219. Lin, S. F., Hsu, T. Y., Liu, M. Y., Lin, L. S., Yang, H. L., Chen, J. Y. & Yang, C. S. (1995). Characterization of Epstein-Barr virus DNase and its interaction with the major DNA binding protein. Virology 208, 712-722. Liu, S., Borras, A. M., Liu, P., Suske, G. & Speck, S. H. (1997). Binding of the ubiquitous cellular transcription factors Sp1 and Sp3 to the ZI domains in the Epstein-Barr virus lytic switch BZLF1 gene promoter. Virology 228, 11-18. Luka, J., Kallin, B. & Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228-231. Makhov, A. M., Subramanian, D., Holley-Guthrie, E., Kenney, S. C. & Griffith, J. D. (2004). The Epstein-Barr virus polymerase accessory factor BMRF1 adopts a ring-shaped structure as visualized by electron microscopy. J Biol Chem 279, 40358-40361. Marsden, H. S., Campbell, M. E., Haarr, L., Frame, M. C., Parris, D. S., Murphy, M., Hope, R. G., Muller, M. T. & Preston, C. M. (1987). The 65,000-Mr DNA-binding and virion trans-inducing proteins of herpes simplex virus type 1. J Virol 61, 2428-2437. Miller, G. & Lipman, M. (1973). Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci U S A 70, 190-194. Murayama, K., Nakayama, S., Kato-Murayama, M., Akasaka, R., Ohbayashi, N., Kamewari-Hayami, Y., Terada, T., Shirouzu, M., Tsurumi, T. & Yokoyama, S. (2009). Crystal structure of epstein-barr virus DNA polymerase processivity factor BMRF1. J Biol Chem 284, 35896-35905. Nakayama, S., Murata, T., Murayama, K., Yasui, Y., Sato, Y., Kudoh, A., Iwahori, S., Isomura, H., Kanda, T. & Tsurumi, T. (2009). Epstein-Barr virus polymerase processivity factor enhances BALF2 promoter transcription as a coactivator for the BZLF1 immediate-early protein. J Biol Chem 284, 21557-21568. Neuhierl, B. & Delecluse, H. J. (2006). The Epstein-Barr virus BMRF1 gene is essential for lytic virus replication. J Virol 80, 5078-5081. Old, L. J., Boyse, E. A., Oettgen, H. F., Harven, E. D., Geering, G., Williamson, B. & Clifford, P. (1966). Precipitating Antibody in Human Serum to an Antigen Present in Cultured Burkitt's Lymphoma Cells. Proc Natl Acad Sci U S A 56, 1699-1704. Roeckel, D. & Mueller-Lantzsch, N. (1985). Biochemical characterization of two Epstein-Barr virus early antigen-associated phosphopolypeptides. Virology 147, 253-263. Summers, W. C. & Klein, G. (1976). Inhibition of Epstein-Barr virus DNA synthesis and late gene expression by phosphonoacetic acid. J Virol 18, 151-155. Tovey, M. G., Lenoir, G. & Begon-Lours, J. (1978). Activation of latent Epstein-Barr virus by antibody to human IgM. Nature 276, 270-272. Tsai, C. H. & Glaser, R. (1991). A comparison of Epstein-Barr virus specific proteins expressed by three Epstein-Barr virus isolates using specific monoclonal antibodies. Intervirology 32, 376-382. Tsai, C. H., Liu, M. T., Chen, M. R., Lu, J., Yang, H. L., Chen, J. Y. & Yang, C. S. (1997). Characterization of Monoclonal Antibodies to the Zta and DNase Proteins of Epstein-Barr Virus. J Biomed Sci 4, 69-77. Tsai, C. H., Williams, M. V. & Glaser, R. (1991). Characterization of two monoclonal antibodies to Epstein-Barr virus diffuse early antigen which react to two different epitopes and have different biological function. J Virol Methods 33, 47-52. Tsurumi, T. (1993). Purification and characterization of the DNA-binding activity of the Epstein-Barr virus DNA polymerase accessory protein BMRF1 gene products, as expressed in insect cells by using the baculovirus system. J Virol 67, 1681-1687. Tsurumi, T., Daikoku, T., Kurachi, R. & Nishiyama, Y. (1993a). Functional interaction between Epstein-Barr virus DNA polymerase catalytic subunit and its accessory subunit in vitro. J Virol 67, 7648-7653. Tsurumi, T., Kobayashi, A., Tamai, K., Daikoku, T., Kurachi, R. & Nishiyama, Y. (1993b). Functional expression and characterization of the Epstein-Barr virus DNA polymerase catalytic subunit. J Virol 67, 4651-4658. Wang, J. T., Yang, P. W., Lee, C. P., Han, C. H., Tsai, C. H. & Chen, M. R. (2005). Detection of Epstein-Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. J Gen Virol 86, 3215-3225. Weiland, K. L., Oien, N. L., Homa, F. & Wathen, M. W. (1994). Functional analysis of human cytomegalovirus polymerase accessory protein. Virus Res 34, 191-206. Weiss, L. M., Strickler, J. G., Warnke, R. A., Purtilo, D. T. & Sklar, J. (1987). Epstein-Barr viral DNA in tissues of Hodgkin's disease. Am J Pathol 129, 86-91. Wong, K. M. & Levine, A. J. (1986). Identification and mapping of Epstein-Barr virus early antigens and demonstration of a viral gene activator that functions in trans. J Virol 60, 149-156. Yang, P. W., Chang, S. S., Tsai, C. H., Chao, Y. H. & Chen, M. R. (2008). Effect of phosphorylation on the transactivation activity of Epstein-Barr virus BMRF1, a major target of the viral BGLF4 kinase. J Gen Virol 89, 884-895. Yokoyama, N., Fujii, K., Hirata, M., Tamai, K., Kiyono, T., Kuzushima, K., Nishiyama, Y., Fujita, M. & Tsurumi, T. (1999). Assembly of the epstein-barr virus BBLF4, BSLF1 and BBLF2/3 proteins and their interactive properties. J Gen Virol 80 ( Pt 11), 2879-2887. Young, L. S. & Rickinson, A. B. (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757-768. Zeng, Y., Middeldorp, J., Madjar, J. J. & Ooka, T. (1997). A major DNA binding protein encoded by BALF2 open reading frame of Epstein-Barr virus (EBV) forms a complex with other EBV DNA-binding proteins: DNAase, EA-D, and DNA polymerase. Virology 239, 285-295. Zhang, Q., Holley-Guthrie, E., Ge, J. Q., Dorsky, D. & Kenney, S. (1997). The Epstein-Barr virus (EBV) DNA polymerase accessory protein, BMRF1, activates the essential downstream component of the EBV oriLyt. Virology 230, 22-34. Zhang, Q., Hong, Y., Dorsky, D., Holley-Guthrie, E., Zalani, S., Elshiekh, N. A., Kiehl, A., Le, T. & Kenney, S. (1996). Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: Effects on EBV transcription and lytic replication. J Virol 70, 5131-5142. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46260 | - |
dc.description.abstract | EB病毒(Epstein-Barr Virus)為人類γ型疱疹病毒的一員,此病毒已經知與許多惡性腫瘤有密切相關性,包括免疫缺失所引起的B細胞瘤、T細胞淋巴瘤、霍金氏症及鼻咽癌等疾病。EB病毒感染宿主後可進入潛伏期,當EB病毒進入溶裂期時,BMRF1是病毒DNA複製時必需的七種溶裂期蛋白質之一。BMRF1為DNA聚合酶輔助因子(DNA polymerase processivity factor),可在病毒DNA複製叉上透過與EB病毒聚合酶BALF5的結合,而增加BALF5結合到DNA上的穩定度。BMRF1也可藉由調控細胞轉錄因子Sp1/ZBP-89以轉活化(transactivate)溶裂期複製起始區域(oriLyt)之BHLF1啟動子,或是與極早期蛋白質Zta更進一步協同活化(synergistic activation)BHLF1啟動子。本實驗室先前的研究已知BMRF1會被EB病毒的Serine/Threonine蛋白質激酶(protein kinase)BGLF4所磷酸化,並抑制BMRF1對BHLF1啟動子的轉活化能力,因此本研究探討磷酸化對於BMRF1功能之影響。實驗結果發現BMRF1上10個Ser-Pro-或Thr-Pro-殘基點突變成無法被磷酸化的Ala或Val時,BMRF1(8A2V)較野生型BMRF1更能抵抗BGLF4對其轉活化能力之抑制作用,而且BMRF1(8A2V)轉活化BHLF1啟動子之能力略優於野生型BMRF1。同時也觀察到BGLF4是透過磷酸化BMRF1而降低其轉活化能力,而非影響BMRF1蛋白質表現量。為探討其中可能的作用機制,以共同免疫沉澱觀察到BGLF4可能會透過激酶活性或是蛋白質間的交互作用影響BMRF1與ZBP-89之交互作用。為進一步瞭解BMRF1的磷酸化對於EB病毒溶裂期複製之影響,利用Doxycycline提引的293TetER細胞,建立含有BMRF1基因剔除之EB病毒基因體的EREVp2089ΔBMRF1細胞株(亦稱MD2細胞株)。與野生型EREVp2089細胞株相比,當MD2細胞株進入溶裂期後,發現溶裂期極早期蛋白質Rta與Zta、早期蛋白質BGLF4表現正常,但晚期蛋白質VCA與gp350/220表現量顯著減少。此外也發現缺乏BMRF1基因之EB病毒不能完成溶裂期DNA複製。進一步在MD2細胞中轉染BMRF1或BMRF1(8A2V)表現質體,觀察BMRF1的磷酸化對EB病毒溶裂期之影響。實驗結果顯示表現BMRF1可使晚期蛋白質表現量回升,EB病毒也可完成溶裂期DNA複製,然而野生型BMRF1挽救溶裂期DNA複製之效率略優於BMRF1(8A2V)。在未來的實驗中,將會轉染不同功能性蛋白質區域缺失之BMRF1突變質體至MD2提引細胞內,並利用DNA微陣列技術(DNA microarray)研究BMRF1不同的功能性蛋白質區域對於EB病毒基因表現之影響。 | zh_TW |
dc.description.abstract | Epstein-Barr virus (EBV) is a human gamma-herpesvirus which has been demonstrated to be highly associated with many human malignancies, such as B lymphoma, T lymphoma, Hodgkin’s lymphoma and nasopharyngeal carcinoma. BMRF1 is one of the essential proteins required for EBV lytic replication, which functions to serve as a processivity factor for EBV polymerase BALF5 in stabilized DNA binding at the viral replication fork. BMRF1 also transactivates viral early promoter BHLF1 through cellular transcription factor Sp1/ZBP-89 or synergistically activates BHLF1 promoter with EBV immediately early transactivator, Zta. In order to investigate the effects of phosphorylation on BMRF1, the residues of Ser-Pro or Thr-Pro which are the BGLF4 putative phosphorylation sites on BMRF1 were mutated to Ala or Val to generate the phosphorylation-defective mutant, BMRF1(8A2V). In this study, BMRF1(8A2V) was found more resistant to BGLF4-mediated inhibition on its transactivation activity than that of wild-type BMRF1. BGLF4 inhibited the transactivation activity of BMRF1 through BMRF1 phosphorylation, but not protein degradation. The ability of BMRF1(8A2V) to transactivate BHLF1 promoter was better than that of wild-type BMRF1. The result of co-immunoprecipitation showed that the interaction between ZBP-89 and wild-type BMRF1 or BMRF1(8A2V), was reduced in the presence of BGLF4 or kinase dead, revealing that BGLF4 may disrupt the interaction between BMRF1 and ZBP-89 through phosphorylation or protein-protein interaction. To further investigate the regulatory effects of BMRF1 phosphorylation on EBV lytic replication, EBV(ΔBMRF1) knockout system was established. The EBV(ΔBMRF1) bacmid was transfected into 293TetER cells, which harbor a tetracycline inducible Rta, to generate EREVp2089ΔBMRF1 cells (abbreviated as MD2 cells). In MD2 cells, the lytic proteins could be induced by doxycycline, but the expression of late proteins, VCA and gp350/220, was significantly reduced in immunoblotting assay. Moreover, the viral DNA replication was also impaired in MD2 cells. By compensation of wild-type BMRF1 or BMRF1(8A2V) into MD2 cells, the effects of BMRF1 phosphorylation on viral lytic replication were studied. The result showed that the complementation with wild-type BMRF1 rescued the expression of viral late protein gp350/220 and the lytic DNA replication in MD2 cells. Additionally, BMRF1(8A2V) could also compensate the viral lytic replication of MD2 cells, though to a less extent. With this system, the influences of BMRF1 mutation or functional domain deletion on lytic gene expression will be systematically studied by EBV DNA microarray analysis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:00:28Z (GMT). No. of bitstreams: 1 ntu-99-R97445101-1.pdf: 5617784 bytes, checksum: f6421b97554ef4d33ef44986a84ff54f (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………… i
誌謝………………………………………………………………………ii 中文摘要…………………………………………………………… iii 英文摘要………………………………………………………………v 1. 導論…………………………………………………………………1 1.1. EB病毒.…………………………………………………………………1 1.2. EB病毒溶裂期之核酸複製……………………………………………3 1.3. EB病毒DNA聚合酶輔助因子…………………………………………5 1.4. 研究動機與目的…………………………………………………………8 2. 材料與方法…………………………………………………………9 3. 結果………………………………………………………………19 3.1. BGLF4磷酸化BMRF1對其轉活化能力之影響………………………………………………19 3.2. BMRF1之磷酸化影響BMRF1轉活化BHLF1啟動子之機制………………19 3.3. 建立BMRF1基因剔除系統以探討BMRF1對EB病毒溶裂期複製 之影響……………………………………………………………………22 3.4. 利用BMRF1基因剔除系統以探討BMRF1之磷酸化對EB病毒溶 裂期複製之影響………………………………………………25 4. 討論………………………………………………………………27 4.1. BMRF1之磷酸化對其轉活化能力之調控及可能的分子機制………………27 4.2. 建立EBV(ΔBMRF1) bacmid及EREVp2089ΔBMRF1細胞株以探討 BMRF1對EB病毒溶裂期之影響……………………………………29 4.3. 藉由MD2細胞探討BMRF1之磷酸化對EB病毒溶裂期之影響………………31 4.4. 探討BMRF1對EB病毒基因啟動子之影響……………………………32 5. 圖表…………………………………………………………………34 6. 參考文獻……………………………………………………………48 | |
dc.language.iso | zh-TW | |
dc.title | BMRF1的磷酸化對EB病毒複製之影響 | zh_TW |
dc.title | The effects of BMRF1 phosphorylation on Epstein-Barr virus replication | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳紀如,林素芳,林宜玲 | |
dc.subject.keyword | EB病毒,BMRF1,ZBP-89,BGLF4,BHLF1啟動子, | zh_TW |
dc.subject.keyword | Epstein-Barr virus,BMRF1,ZBP-89,BGLF4,BHLF1 promoter, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。