請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46258完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳紀聖(Chi-Sheng Wu) | |
| dc.contributor.author | Szu-Chun Yu | en |
| dc.contributor.author | 游思淳 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:00:23Z | - |
| dc.date.available | 2012-07-29 | |
| dc.date.copyright | 2010-07-29 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | [1] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
[2] Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator, The Journal of Physical Chemistry C, 113 (2009) 17536-17542. [3] R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation, The Journal of Physical Chemistry B, 108 (2004) 8992-8995. [4] C.-C. Lo, C.-W. Huang, C.-H. Liao, J.C.S. Wu, Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting, International Journal of Hydrogen Energy, 35 (2010) 1523-1529. [5] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21. [6] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 38 (2009) 253-278. [7] K. Maeda, K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light, The Journal of Physical Chemistry C, 111 (2007) 7851-7861. [8] N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals and Applications, Wiley, New York, 1989, p.45-52. [9] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344. [10] M.W. Kanan, D.G. Nocera, In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+, Science, 321 (2008) 1072-1075. [11] H. Kato, A. Kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K), The Journal of Physical Chemistry B, 105 (2001) 4285-4292. [12] K. Fujihara, T. Ohno, M. Matsumura, Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles, Journal of the Chemical Society, Faraday Transactions, 94 (1998) 3705-3709. [13] M. Kitano, K. Tsujimaru, M. Anpo, Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts: Effect of the work function of the substrates on the yield of the reaction, Applied Catalysis A: General, 314 (2006) 179-183. [14] S. Sato, J.M. White, Photodecomposition of water over Pt/TiO2 catalysts, Chemical Physics Letters, 72 (1980) 83-86. [15] K. Domen, S. Naito, M. Soma, T. Onishi, K. Tamaru, Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst, Journal of the Chemical Society, Chemical Communications, (1980) 543-544. [16] K. Domen, A. Kudo, M. Shibata, A. Tanaka, K.-I. Maruya, T. Onishi, Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure, Journal of the Chemical Society, Chemical Communications, (1986) 1706-1707. [17] A. Kudo, A. Tanaka, K. Domen, K.-i. Maruya, K.-i. Aika, T. Onishi, Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst, Journal of Catalysis, 111 (1988) 67-76. [18] A. Kudo, H. Kato, Photocatalytic Decomposition of Water into H2 and O2 over Novel Photocatalyst K3Ta3Si2O13 with Pillared Structure Consisting of Three TaO6 Chains, Chemistry Letters, 26 (1997) 867-868. [19] Y. Inoue, T. Kubokawa, K. Sato, Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with a tunnel structure for decomposition of water, Journal of the Chemical Society, Chemical Communications, (1990) 1298-1299. [20] A. Kudo, H. Kato, S. Nakagawa, Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity, The Journal of Physical Chemistry B, 104 (1999) 571-575. [21] H. Kato, A. Kudo, New tantalate photocatalysts for water decomposition into H2 and O2, Chemical Physics Letters, 295 (1998) 487-492. [22] J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Y. Inoue, RuO2-Loaded β-Ge3N4 as a Non-Oxide Photocatalyst for Overall Water Splitting, Journal of the American Chemical Society, 127 (2005) 4150-4151. [23] K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, Photocatalytic Overall Water Splitting on Gallium Nitride Powder, Bulletin of the Chemical Society of Japan, 80 (2007) 1004-1010. [24] N. Arai, N. Saito, H. Nishiyama, Y. Inoue, K. Domen, K. Sato, Overall Water Splitting by RuO2-dispersed Divalent-ion-doped GaN Photocatalysts with d10 Electronic Configuration, Chemistry Letters, 35 (2006) 796-797. [25] J.F. Reber, K. Meier, Photochemical production of hydrogen with zinc sulfide suspensions, The Journal of Physical Chemistry, 88 (1984) 5903-5913. [26] H. Kato, A. Kudo, Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium, The Journal of Physical Chemistry B, 106 (2002) 5029-5034. [27] T. Ishii, H. Kato, A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 163 (2004) 181-186. [28] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catalysis Letters, 53 (1998) 229-230. [29] Y. Hosogi, H. Kato, A. Kudo, Synthesis of SnNb2O6 Nanoplates and Their Photocatalytic Properties, Chemistry Letters, 35 (2006) 578-579. [30] Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Role of Sn2+ in the Band Structure of SnM2O6 and Sn2M2O7(M = Nb and Ta) and Their Photocatalytic Properties, Chemistry of Materials, 20 (2008) 1299-1307. [31] H. Kato, H. Kobayashi, A. Kudo, Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure, The Journal of Physical Chemistry B, 106 (2002) 12441-12447. [32] G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm), Chemical Communications, (2002) 1698-1699. [33] D. Yamasita, T. Takata, M. Hara, J.N. Kondo, K. Domen, Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting, Solid State Ionics, 172 (2004) 591-595. [34] A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Photoreactions on LaTiO2N under Visible Light Irradiation, The Journal of Physical Chemistry A, 106 (2002) 6750-6753. [35] A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfide Sm2Ti2S2O5 as a Stable Photocatalyst for Water Oxidation and Reduction under Visible Light Irradiation (λ ≤ 650 nm), Journal of the American Chemical Society, 124 (2002) 13547-13553. [36] A. Ishikawa, Y. Yamada, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Novel Synthesis and Photocatalytic Activity of Oxysulfide Sm2Ti2S2O5, Chemistry of Materials, 15 (2003) 4442-4446. [37] A. Harriman, J.M. Thomas, W. Zhou, D.A. Jefferson, A new family of photocatalysts based on Bi2O3, Journal of Solid State Chemistry, 72 (1988) 126-130. [38] A. Kudo, I. Mikami, Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution, Journal of the Chemical Society, Faraday Transactions, 94 (1998) 2929-2932. [39] H.C. Youn, S. Baral, J.H. Fendler, Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation, The Journal of Physical Chemistry, 92 (1988) 6320-6327. [40] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature, 440 (2006) 295-295. [41] Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light, The Journal of Physical Chemistry C, 111 (2006) 1042-1048. [42] K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts, The Journal of Physical Chemistry, 90 (1986) 292-295. [43] J. Sato, N. Saito, H. Nishiyama, Y. Inoue, Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d10 Configuration. I. Influences of Preparation Conditions on Activity, The Journal of Physical Chemistry B, 107 (2003) 7965-7969. [44] H. Kato, K. Asakura, A. Kudo, Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, Journal of the American Chemical Society, 125 (2003) 3082-3089. [45] T.A. Ring, Ceramic Powder Synthesis with Solid Phase Reactant, Academic Press, San Diego, 1996, p.170-176. [46] D. Wang, J. Ye, T. Kako, T. Kimura, Photophysical and Photocatalytic Properties of SrTiO3 Doped with Cr Cations on Different Sites, The Journal of Physical Chemistry B, 110 (2006) 15824-15830. [47] K. Maeda, K. Domen, Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light, Chemistry of Materials, 22 (2010) 612-623. [48] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting, Journal of the American Chemical Society, 127 (2005) 8286-8287. [49] K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, K. Domen, Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting, Angewandte Chemie International Edition, 45 (2006) 7806-7809. [50] M. Yoshida, K. Takanabe, K. Maeda, A. Ishikawa, J. Kubota, Y. Sakata, Y. Ikezawa, K. Domen, Role and Function of Noble-Metal/Cr-Layer Core/Shell Structure Cocatalysts for Photocatalytic Overall Water Splitting Studied by Model Electrodes, The Journal of Physical Chemistry C, 113 (2009) 10151-10157. [51] T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota, K. Domen, Aspects of the Water Splitting Mechanism on (Ga1−xZnx)(N1−xOx) Photocatalyst Modified with Rh2−yCryO3 Cocatalyst, The Journal of Physical Chemistry C, 113 (2009) 21458-21466. [52] A.J. Bard, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors, Journal of Photochemistry, 10 (1979) 59-75. [53] S.W. Bae, S.M. Ji, S.J. Hong, J.W. Jang, J.S. Lee, Photocatalytic overall water splitting with dual-bed system under visible light irradiation, International Journal of Hydrogen Energy, 34 (2009) 3243-3249. [54] E.A. Kozlova, T.P. Korobkina, A.V. Vorontsov, Overall water splitting over Pt/TiO2 catalyst with Ce3+/Ce4+ shuttle charge transfer system, International Journal of Hydrogen Energy, 34 (2009) 138-146. [55] R. Abe, T. Takata, H. Sugihara, K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator, Chemical Communications, (2005) 3829-3831. [56] M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, K. Domen, Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ < 500 nm), Chemistry Letters, 37 (2008) 138-139. [57] M. Higashi, R. Abe, T. Takata, K. Domen, Photocatalytic Overall Water Splitting under Visible Light Using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3−/I− Shuttle Redox Mediated System, Chemistry of Materials, 21 (2009) 1543-1549. [58] H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation, Chemistry Letters, 33 (2004) 1348-1349. [59] Y. Sasaki, A. Iwase, H. Kato, A. Kudo, The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation, Journal of Catalysis, 259 (2008) 133-137. [60] H. Kato, Y. Sasaki, A. Iwase, A. Kudo, Role of iron ion electron mediator on photocatalytic Overall water splitting under visible light irradiation using Z-scheme systems, Bulletin of the Chemical Society of Japan, 80 (2007) 2457-2464. [61] M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J.M. Thomas, Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production, Catalysis Today, 122 (2007) 51-61. [62] M. Kitano, K. Iyatani, K. Tsujimaru, M. Matsuoka, M. Takeuchi, M. Ueshima, J.M. Thomas, M. Anpo, The effect of chemical etching by HF solution on the photocatalytic activity of visible light-responsive TiO2 thin films for solar water splitting, Topics in Catalysis, 49 (2008) 24-31. [63] M. Matsuoka, M. Kitano, S. Fukumoto, K. Iyatani, M. Takeuchi, M. Anpo, The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films, Catalysis Today, 132 (2008) 159-164. [64] R. Tode, A. Ebrahimi, S. Fukumoto, K. Iyatani, M. Takeuchi, M. Matsuoka, C. Lee, C.-S. Jiang, M. Anpo, Photocatalytic Decomposition of Water on Double-Layered Visible Light-Responsive TiO2 Thin Films Prepared by a Magnetron Sputtering Deposition Method, Catalysis Letters, 135 (2010) 10-15. [65] J. Yu, A. Kudo, Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4, Advanced Functional Materials, 16 (2006) 2163-2169. [66] A. Kudo, K. Omori, H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties, Journal of the American Chemical Society, 121 (1999) 11459-11467. [67] A. Goswami, A. Acharya, A.K. Pandey, Study of Self-Diffusion of Monovalent and Divalent Cations in Nafion-117 Ion-Exchange Membrane, The Journal of Physical Chemistry B, 105 (2001) 9196-9201. [68] W.B. Fortune, M.G. Mellon, Determination of Iron with o-Phenanthroline: A Spectrophotometric Study, Industrial & Engineering Chemistry Analytical Edition, 10 (1938) 60-64. [69] W.D. Callister, Materials Science and Engineering: An Introduction, 7th Edition, Wiley, New York, 2006, p.68. [70] Swarthmore, Powder Diffraction File No.79-0174, in JCPDS--International Center for Diffraction Data, 1997 [71] Swarthmore, Powder Diffraction File No.89-4479, in JCPDS--International Center for Diffraction Data, 1997 [72] Swarthmore, Powder Diffraction File No.82-1154, in JCPDS--International Center for Diffraction Data, 1997 [73] Swarthmore, Powder Diffraction File No.86-2495, in JCPDS--International Center for Diffraction Data, 1997 [74] Swarthmore, Powder Diffraction File No.75-2480, in JCPDS--International Center for Diffraction Data, 1997 [75] Swarthmore, Powder Diffraction File No.83-1812, in JCPDS--International Center for Diffraction Data, 1997 [76] D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band-gap energies of sol-gel-derived SrTiO3 thin films, Applied Physics Letters, 79 (2001) 3767-3769. [77] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95 (1995) 69-96. [78] H. Haapala, The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source, Environmental Pollution, 99 (1998) 361-363. [79] D.B. Williams, C.B. Carter, Transmission Electron Microscopy, 2nd Edition, Springer, New York and London, 2009, p.7-8. [80] C.N. Satterfield, Heterogeneous Catalysis in Industrial Practice, 2nd Edition, Mcgraw Hill, New York, 1991, p.167-171. [81] B.D. Ratner, D.G. Castner, Electron Spectroscopy for Chemical Analysis, John Wiley & Sons, New York, 1997, p.69-80. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46258 | - |
| dc.description.abstract | 為尋求潔淨的替代能源,以光催化水分解方式製氫是極具有發展前景的途徑,Z-scheme系統乃是利用兩種光觸媒,分別進行產氫與產氧,並選擇適當離子還原對媒介用以傳遞電子。先前的研究指出,以薄膜分離產氫及產氧觸媒,僅讓離子對在膜中相互擴散,可以有效的讓氫氣跟氧氣分開產生,降低逆反應再結合成為水,產氫的效能也因此提升。本實驗針對薄膜分離式的反應系統,以比色法定量分析鐵離子對在Nafion膜中的擴散行為,由鐵離子的外顯擴散係數算得三價鐵離子每小時於最大濃度差2mM可擴散31.4μmol,而二價鐵離子之擴散速率則為44.2μmol/h,遠大於觸媒進行光反應生成氫氧的速率,顯示反應確實為水分解控制。產氫觸媒Pt/SrTiO3:Rh以固態熔融法搭配光沉積法製備,產氧觸媒則使用活性不同的WO3與BiVO4,並搭配產氫觸媒於Fe3+水溶液中進行單一混合型光反應,若與個別之半反應氣體產生速率相比,可觀察出全反應中的產氧速率受限於產氫端的較低活性而大幅下降,反應速率決定步驟落在產氫觸媒。而使用分離式反應器,由於減少了氫氧逆反應的機會,可提升產氫的速率,將兩邊觸媒分開也可解決觸媒之間混合在一起之光源競爭吸收問題,且觸媒在經過12小時的反應仍維持相同的氫氣平均產率,失活的情況幾乎可忽略。於最佳反應條件下,使用可見光源300W氙燈進行分離式光催化水分解,產氫速率可達0.88μmol/g.hr。 | zh_TW |
| dc.description.abstract | Hydrogen generation from photocatalytic water splitting has been so called the “artificial photosynthesis”, a green process that is promising and clean. The Z-scheme system is comprised of H2-catalyst and O2-catalyst with aid of electron transfer mediator to produce hydrogen and oxygen, respectively, mimicking the two step photosynthesis process. It shows that the seperation of H2-catalyst and O2-catalyst in two discrete chamber by Nafion ion-exchange membrane can efficiently increase the gas evolution rate due to backward reaction elimination from preveous research. In this report, the iron mediator transfer phenomenon through Nafion membrane was analyzed by colorimetry method quantitatively. The derived diffusion rates for irons were remarkably larger than photocatalytic hydrogen producing rate, indicating the real water splitting reaction. Besides, by applying different O2-catalyst (WO3 and BiVO4) along with H2-catalyst (Pt/SrTiO3:Rh) in water splitting reaction, the rate determining step has been shown to lie in H2-catalyst part. Furthermore, the twin reactor device can not only produce hydrogen and oxygen simultaneously in two chambers under visible light irradiation, but also eliminate the chance for light source competition between photocatalysts. Under the optimal condition, the hydrogen rate reached 0.88μmol/g.hr, and the deactivation could be negligible during 12 hours reaction time. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:00:23Z (GMT). No. of bitstreams: 1 ntu-99-R97524025-1.pdf: 5972862 bytes, checksum: bb2c4f716c5ee06db9bfc19107d93ba2 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 VII 表目錄 XIV 第一章 緒論 1 第二章 文獻回顧 3 2.1 原理 3 2.1.1 光催化水分解 3 2.1.2 光觸媒反應過程 5 2.2 影響水分解活性的因素 8 2.2.1 觸媒材料特性 8 2.2.2 犧牲試劑工作原理 11 2.2.3 助觸媒與摻雜元素效應 12 2.3 鈦酸鍶觸媒 19 2.3.1 固態熔融法製備 19 2.3.2 鈦酸鍶結構簡介 21 2.4 光催化水分解系統 22 2.4.1 單觸媒水分解 22 2.4.2 雙觸媒水分解 26 2.4.3 分離式H-type水分解 34 第三章 實驗原理與方法 38 3.1 實驗藥品與儀器設備 38 3.1.1 藥品 38 3.1.2 器材 40 3.2 產氫觸媒製備 41 3.2.1 固態高溫熔融法(Solid-state fusion method) 41 3.2.2 光沉積法(Photo-deposition method) 42 3.3 產氧觸媒製備 43 3.3.1 水熱法合成(Hydrothermal method) 43 3.3.2 液相合成法(Aqueous synthesis process) 44 3.4 離子交換膜前處理 46 3.5 比色法定量鐵離子 48 3.5.1 三價鐵檢量線製作 48 3.5.2 二價鐵檢量線製作 50 3.5.3 鐵離子擴散量測分析 53 3.6 觸媒特性分析原理 56 3.6.1 儀器型號與規格 56 3.6.2 X光繞射儀(X-Ray Diffractometer,XRD) 56 3.6.3 紫外光-可見光光譜儀( UV-Visible Spectrometer,UV-VIS ) 61 3.6.4 場發射掃描式電子顯微鏡( Field Emission Scanning Electron Microscope,FE-SEM ) 62 3.6.5 能量分散光譜儀( Energy Dispersive Spectrometer,EDS ) 64 3.6.6 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 64 3.6.7 比表面積分析儀( Specific Surface Area Analyzer,BET ) 65 3.6.8 X光光電子能譜儀( X-ray Photoelectron Spectroscopy,XPS ) 65 3.6.9 氣相管柱層析儀–熱導偵測器( GC–TCD ) 66 3.7 光反應活性檢測 69 3.7.1 氫氣檢量線製作 69 3.7.2 氧氣與氮氣檢量線製作 72 3.7.3 光催化水分解單一反應器系統 75 3.7.4 光催化水分解分離式雙反應器系統 81 第四章 觸媒特性分析與討論 87 4.1 UV-Vis吸收光譜 87 4.2 XRD晶格繞射分析 89 4.3 SEM掃描式電子顯微鏡 92 4.4 EDS能量分散光譜 96 4.5 TEM穿透式電子顯微鏡 97 4.6 XPS表面元素價態分析 100 4.7 BET比表面積測定 101 第五章 實驗結果與討論 102 5.1 比色法定量分析鐵離子擴散行為 102 5.1.1 薄膜改質因素 102 5.1.2 薄膜厚度因素 106 5.1.3 鐵離子外顯擴散係數量化 107 5.1.4 離子擴散機制 112 5.1.5 光反應系統之擴散 113 5.2 單一反應系統光催化活性 115 5.2.1 產氫端半反應 115 5.2.2 產氧端半反應 118 5.2.3 單一混合系統水分解全反應 119 5.3 分離式雙反應系統光催化水分解活性 125 5.4 不同反應系統之綜合比較 131 第六章 結論 134 第七章 參考資料 135 個人小傳 142 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光催化 | zh_TW |
| dc.subject | 產氫技術 | zh_TW |
| dc.subject | 離子傳輸 | zh_TW |
| dc.subject | 水分解 | zh_TW |
| dc.subject | hydrogen evolution | en |
| dc.subject | ion transportation | en |
| dc.subject | Photocatalytic water splitting | en |
| dc.title | 光催化水分解雙反應器之離子媒介傳輸現象 | zh_TW |
| dc.title | Mediated-ion transportation in a twin reactor for photocatalytic water splitting | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳乃立(Nae-Lih Wu),劉端祺(Tuan-Chi Liu) | |
| dc.subject.keyword | 光催化,水分解,離子傳輸,產氫技術, | zh_TW |
| dc.subject.keyword | Photocatalytic water splitting,ion transportation,hydrogen evolution, | en |
| dc.relation.page | 142 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
