Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46257
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇南維
dc.contributor.authorYen-Lun Kungen
dc.contributor.author龔彥綸zh_TW
dc.date.accessioned2021-06-15T05:00:21Z-
dc.date.available2012-07-30
dc.date.copyright2010-07-30
dc.date.issued2010
dc.date.submitted2010-07-28
dc.identifier.citation王德男、李文立(2006)。木瓜產業研討會專刊。行政院農業委員會農業試驗所,台中,台灣。
王騰旭、陳似蘭、李敏雄、蘇南維(2008)。數種植物材料之親醣蛋白活性檢測。台灣農業化學與食品科學 46, 14-21。
李文立(2009)。木瓜栽培管理手冊。鳳山熱帶園藝試驗分所,高雄,台灣。
黃士晃、林晉卿(2009)。番木瓜合理化施肥技術。行政院農業委員會台南區農業改良場,台南,台灣。
董大成、黃雪芬(1989)。Lectin在蔬菜、水果中的分佈。中華民國營養學會雜誌14, 37-44。
莊榮輝(2005)。酵素化學實驗。台大微生物與生化所生物化學實驗室,台北,台灣。
王騰旭(2010)。番木瓜(Carica papaya)種籽中對N-乙醯半乳糖胺具專一性親醣蛋白之研究。台大農業化學系博士論文,台北,台灣。
Adebiyi, A., Ganesan Adaikan, P., and Prasad, R.N. (2003). Tocolytic and toxic activity of papaya seed extract on isolated rat uterus. Life Sci 74, 581-592.
Agrawal, B.B.L., and Goldstein, I.J. (1965). Specific binding of concanavalin a to cross-linked dextran gels. Biochem J 96, 23contd-23con25c.
Aruna, R., Rao, D.M., Reddy, L.J., Ramakrishnan, S.S., and Upadhyaya, H.D. (2007). Influence of pod maturity and level of domestication on biochemical components in wild and cultivated pigeonpea (Cajanus cajan). Ann Appl Biol 151, 25-32.
Ashwell, G., and Harford, J. (1982). Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51, 531-554.
Ashwell, G., and Morell, A.G. (1974). The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol 41, 99-128.
Azarkan, M., El Moussaoui, A., van Wuytswinkel, D., Dehon, G., and Looze, Y. (2003). Fractionation and purification of the enzymes stored in the latex of Carica papaya. J Chromatogr B Analyt Technol Biomed Life Sci 790, 229-238.
Barnes, D.J., Baldwin, B.S., and Braasch, D.A. (2009). Ricin accumulation and degradation during castor seed development and late germination. Ind Crop Prod 30, 254-258.
Basu, D., and Appukuttan, P.S. (1983). Plant lectins specific for N-acetyl-β-D-galactosamine. J Biosciences 5, 131-135.
Bauchrowitz, M.A., Barker, D.G., Nadaud, I., Rouge, P., and Lescure, B. (1992). Lectin genes from the legume Medicago truncatula. Plant Mol Biol 19, 1011-1017.
Bennett, R.N., Kiddle, G., and Wallsgrove, R.M. (1997). Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya. Phytochemistry 45, 59-66.
Bewley, J.D. (1997). Seed germination and dormancy. Plant Cell 9, 1055-1066.
Bies, C., Lehr, C.M., and Woodley, J.F. (2004). Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 56, 425-435.
Bird, G.W.G. (1952). Relationship of the blood sub-groups A1, A2 and A1B, A2B to haemagglutinins present in the seeds of Dolichos biflorus. Nature 170, 674.
Bohlool, B.B., and Schmidt, E.L. (1976). Immunofluorescent polar tips of Rhizobium japonicum: possible site of attachment or lectin binding. J Bacteriol 125, 1188-1194.
Bowles, D.J., and Pappin, D.J. (1988). Traffic and assembly of concanavalin A. Trends Biochem Sci 13, 60-64.
Boyd, W.C., and Shapleigh, E. (1954). Specific precipitating activity of plant agglutinins (lectins). Science 119, 419.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
Brinck, U., Korabiowska, M., Bosbach, R., and Gabius, H.J. (1998). Detection of inflammation- and neoplasia-associated alterations in human large intestine using plant/invertebrate lectins, galectin-1 and neoglycoproteins. Acta Anat (Basel) 161, 219-233.
Bryan, M.C., Plettenburg, O., Sears, P., Rabuka, D., Wacowich-Sgarbi, S., and Wong, C.H. (2002). Saccharide display on microtiter plates. Chem Biol 9, 713-720.
Chan, H.T., Heu, R.A., Tang, C.S., Okazaki, E.N., and Ishizaki, S.M. (1978). Composition of papaya seeds. J Food Sci 43, 255-256.
Chumkhunthod, P., Rodtong, S., Lambert, S.J., Fordham-Skelton, A.P., Rizkallah, P.J., Wilkinson, M.C., and Reynolds, C.D. (2006). Purification and characterization of an N-acetyl-D-galactosamine-specific lectin from the edible mushroom Schizophyllum commune. Biochim Biophys Acta 1760, 326-332.
Cioci, G., Mitchell, E.P., Gautier, C., Wimmerova, M., Sudakevitz, D., Perez, S., Gilboa-Garber, N., and Imberty, A. (2003). Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555, 297-301.
Conaway, C.C., Yang, Y.M., and Chung, F.L. (2002). Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab 3, 233-255.
Cooper, D.N., Boulianne, R.P., Charlton, S., Farrell, E.M., Sucher, A., and Lu, B.C. (1997). Fungal galectins, sequence and specificity of two isolectins from Coprinus cinereus. J Biol Chem 272, 1514-1521.
Crocker, P.R., and Varki, A. (2001). Siglecs, sialic acids and innate immunity. Trends Immunol 22, 337-342.
Das, R.P. (1980). Effect of papaya seed on the genital organs and fertility of male rats. Indian J Exp Biol 18, 408-409.
De Hoff, P.L., Brill, L.M., and Hirsch, A.M. (2009). Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282, 1-15.
De Mejia, E.G., and Prisecaru, V.I. (2005). Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci 45, 425-445.
Depierreux, C., Kang, H.C., Guerin, B., Monsigny, M., and Delmotte, F. (1991). Characterization of an Agrobacterium tumefaciens lectin. Glycobiology 1, 643-649.
Diaz, C.L., Spaink, H.P., and Kijne, J.W. (2000). Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene. Mol Plant Microbe Interact 13, 268-276.
Drickamer, K. (1988). Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263, 9557-9560.
Duke, J.A. (1983). Carica papaya L. Retrieved from http://www.hort.purdue.edu/newcrop/duke_energy/Carica_papaya.html.
Edelman, G.M., Reeke, G.N., Wang, J.L., Waxdal, M.J., Becker, J.W., and Cunningh.Ba (1972). Covalent and three-dimensional structure of concanavalin A. P Natl Acad Sci USA 69, 2580-2584.
Fahey, J.W., Zalcmann, A.T., and Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5-51.
Fowke, J.H., Shu, X.O., Dai, Q., Shintani, A., Conaway, C.C., Chung, F.L., Cai, Q., Gao, Y.T., and Zheng, W. (2003). Urinary isothiocyanate excretion, brassica consumption, and gene polymorphisms among women living in Shanghai, China. Cancer Epidemiol Biomarkers Prev 12, 1536-1539.
Gabius, H.J., Andre, S., Danguy, A., Kayser, K., and Gabius, S. (1994). Detection and quantification of carbohydrate-binding sites on cell surfaces and in tissue sections by neoglycoproteins. Methods Enzymol 242, 37-46.
Gabius, H.J., Siebert, H.C., Andre, S., Jimenez-Barbero, J., and Rüdiger, H. (2004). Chemical biology of the sugar code. Chembiochem 5, 740-764.
Goldstein, I.J., Murphy, L.A., and Ebisu, S. (1977). Lectins as carbohydrate-binding proteins. Pure Appl Chem 49, 1095-1103.
Goldstein, I.J., and Poretz, R.D. (1986). Isolation, physicochemical characterization and carbohydrate-binding specificity of lectins. In The Lectins: Properties, Functions and Applications in Biology and Medicine, I.E. Liener, N. Sharon, and I.J. Goldstein, eds. (Orlando, FL, Academic Press), pp. 35-247.
Gordon, J.A., Lis, H., and Sharon, N. (1972a). Binding of soybean agglutinin by normal and trypsin-treated red blood cells. Biochimica Et Biophysica Acta 264, 387-&.
Gordon, J.A., Sharon, N., and Lis, H. (1972b). Binding of soybean agglutinin by normal and trypsin-treated red blood cells. Biochim Biophys Acta 264, 387-391.
Gottschalk, A. (1959). On the mechanism underlying initiation of influenza virus infection. Erg Mikrobiol Imm E 32, 1-22.
Haidar, M., Seddiki, N., Gluckman, J.C., and Gattegno, L. (1992). Carbohydrate binding properties of the envelope glycoproteins of human immunodeficiency virus type 1. Glycoconj J 9, 315-323.
Hansen, S., Holm, D., Moeller, V., Vitved, L., Bendixen, C., Reid, K.B., Skjoedt, K., and Holmskov, U. (2002). CL-46, a novel collectin highly expressed in bovine thymus and liver. J Immunol 169, 5726-5734.
Higgins, T.J.V., Chandler, P.M., Zurawski, G., Button, S.C., and Spencer, D. (1983). The biosynthesis and primary structure of pea seed lectin. J Biol Chem 258, 9544-9549.
Hirsch, A.M. (1999). Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr Opin Plant Biol 2, 320-326.
Hirst, G.K. (1941). The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science 94, 22-23.
Hoffman, L.M., Ma, Y., and Barker, R.F. (1982). Molecular cloning of Phaseolus vulgaris lectin mRNA and Use of cDNA as a probe to estimate lectin transcript levels in various tissues. Nucleic Acids Res 10, 7819-7828.
Hori, K., Miyazawa, K., and Ito, K. (1990). Some common properties of lectins from marine algae. Hydrobiologia 204, 561-566.
Itzkowitz, S.H., Yuan, M., Montgomery, C.K., Kjeldsen, T., Takahashi, H.K., Bigbee, W.L., and Kim, Y.S. (1989). Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res 49, 197-204.
Kawsar, S.M., Fujii, Y., Matsumoto, R., Ichikawa, T., Tateno, H., Hirabayashi, J., Yasumitsu, H., Dogasaki, C., Hosono, M., Nitta, K., et al. (2008). Isolation, purification, characterization and glycan-binding profile of a D-galactoside specific lectin from the marine sponge, Halichondria okadai. Comp Biochem Physiol B Biochem Mol Biol 150, 349-357.
Kermanshai, R., McCarry, B.E., Rosenfeld, J., Summers, P.S., Weretilnyk, E.A., and Sorger, G.J. (2001). Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 57, 427-435.
Kilpatrick, D.C. (1998). Use of lectins as mitogens for lymphocytes. In Lectin Methods and Protocols, J.M. Rhodes, and J.D. Milton, eds. (Totowa, NJ, Humana Press), pp. 385-392.
Kilpatrick, D.C. (2002). Animal lectins: a historical introduction and overview. Biochim Biophys Acta 1572, 187-197.
Kim, R., Yokota, H., and Kim, S.H. (2000). Electrophoresis of proteins and protein-protein complexes in a native agarose gel. Anal Biochem 282, 147-149.
King, M.W. (2010). Clinical significances of sphingolipids. Retrieved June 06, 2010, from http://themedicalbiochemistrypage.org/images/abobloodgroups.jpg.
Krogfelt, K.A., Bergmans, H., and Klemm, P. (1990). Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infect Immun 58, 1995-1998.
Landsteiner, K., and Raubitschek, H. (1907). Beobachtungen uber hämolyse und hämagglutination. Zbl Bakt I Abt Orig 45, 600-607.
Lohiya, N.K., Kothari, L.K., Manivannan, B., Mishra, P.K., and Pathak, N. (2000). Human sperm immobilization effect of Carica papaya seed extracts: an in vitro study. Asian J Androl 2, 103-109.
Lohiya, N.K., Pathak, N., Mishra, P.K., and Manivannan, B. (1999). Reversible contraception with chloroform extract of Carica papaya Linn. seeds in male rabbits. Reprod Toxicol 13, 59-66.
Looze, Y., Boussard, P., Huet, J., Vandenbussche, G., Raussens, V., and Wintjens, R. (2009). Purification and characterization of a wound-inducible thaumatin-like protein from the latex of Carica papaya. Phytochemistry 70, 970-978.
Marchalonis, J.J., and Edelman, G.M. (1968). Isolation and characterization of a hemagglutinin from Limulus polyphemus. J Mol Biol 32, 453-456.
Maycox, P.R., Burgess, J., Marcus, S.E., and Bowles, D.J. (1988). Studies on a-D-Mannosidase and ConA during jackbean development and germination. Protoplasma 144, 34-45.
Medeiros, D.S., Medeiros, T.L., Ribeiro, J.K., Monteiro, N.K., Migliolo, L., Uchoa, A.F., Vasconcelos, I.M., Oliveira, A.S., de Sales, M.P., and Santos, E.A. (2010). A lactose specific lectin from the sponge Cinachyrella apion: purification, characterization, N-terminal sequences alignment and agglutinating activity on Leishmania promastigotes. Comp Biochem Physiol B Biochem Mol Biol 155, 211-216.
Miyoshi, N., Uchida, K., Osawa, T., and Nakamura, Y. (2007). Selective cytotoxicity of benzyl isothiocyanate in the proliferating fibroblastoid cells. Int J Cancer 120, 484-492.
Mojica-Henshaw, M.P., Francisco, A.D., De Guzman, F., and Tigno, X.T. (2003). Possible immunomodulatory actions of Carica papaya seed extract. Clin Hemorheol Microcirc 29, 219-229.
Morgan, W.T., and Watkins, W.M. (2000). Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity. Glycoconj J 17, 501-530.
Nakamura, Y., and Miyoshi, N. (2006). Cell death induction by isothiocyanates and their underlying molecular mechanisms. Biofactors 26, 123-134.
Nakamura, Y., Yoshimoto, M., Murata, Y., Shimoishi, Y., Asai, Y., Park, E.Y., and Sato, K. (2007). Papaya seed represents a rich source of biologically active isothiocyanate. J Agric Food Chem 55, 4407-4413.
Nowell, P.C. (1960). Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res 20, 462-466.
Ofek, I., Mirelman, D., and Sharon, N. (1977). Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 265, 623-625.
Otsuki, N., Dang, N.H., Kumagai, E., Kondo, A., Iwata, S., and Morimoto, C. (2010). Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J Ethnopharmacol 127, 760-767.
Pathak, N., Mishra, P.K., Manivannan, B., and Lohiya, N.K. (2000). Sterility due to inhibition of sperm motility by oral administration of benzene chromatographic fraction of the chloroform extract of the seeds of Carica papaya in rats. Phytomedicine 7, 325-333.
Peumans, W.J., Hause, B., and Van Damme, E.J. (2000). The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments. FEBS Lett 477, 186-192.
Peumans, W.J., and Van Damme, E.J. (1995). Lectins as plant defense proteins. Plant Physiol 109, 347-352.
Peumans, W.J., and Vandamme, E.J.M. (1995). Lectins as plant defense proteins. Plant Physiol 109, 347-352.
Pintao, A.M., Pais, M.S.S., Coley, H., Kelland, L.R., and Judson, I.R. (1995). In-vitro and in-vivo antitumor activity of benzyl isothiocyanate: a natural product from Tropaeolum Majus. Planta Medica 61, 233-236.
Porath, J., Laas, T., and Janson, J.C. (1975). Agar derivatives for chromatography, electrophoresis and gel-bound enzymes: III. Rigid agarose gels cross-linked with divinyl sulphone (DVS) J Chromatogr 103, 49-62.
Pusztai, A. (1991). In Plant lectins (Cambridge University Press), p. 263.
Pusztai, A., Ewen, S.W., Grant, G., Peumans, W.J., van Damme, E.J., Rubio, L., and Bardocz, S. (1990). Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors. Digestion 46 Suppl 2, 308-316.
Rüdiger, H., and Gabius, H.J. (2001). Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18, 589-613.
Rüdiger, H., and Gabius, H.J. (2009). Plant lectins. In The Sugar Code, H.J. Gabius, ed. (Weinheim, WILEY-VCH Verlag GmbH &Co. KGaA), p. 307.
Reisner, Y., Kapoor, N., Kirkpatrick, D., Pollack, M.S., Cunninghamrundles, S., Dupont, B., Hodes, M.Z., Good, R.A., and Oreilly, R.J. (1983). Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 61, 341-348.
Reisner, Y., Linkerisraeli, M., and Sharon, N. (1976a). Separation of mouse thymocytes into two subpopulations by use of peanut agglutinin. Israel J Med Sci 12, 1357-1357.
Reisner, Y., Ravid, A., and Sharon, N. (1976b). Use of Soybean Agglutinin for Separation of Mouse B and T Lymphocytes. Biochem Bioph Res Co 72, 1585-1591.
Rogers, D.J., and Fish, B.C. (1991). Marine algal lectins. In Lectin Reviews, D.C. Kilpatrick, E. van Driessche, and T.C. Bog-Hansen, eds. (St. Louis, USA,, Sigma Chem. Co.), pp. 129-142.
Rosen, S.D. (1990). The LEC-CAMs: an emerging family of cell-cell adhesion receptors based upon carbohydrate recognition. Am J Resp Cell Mol 3, 397-402.
Schnebli, H.P., Roeder, C., and Tarcsay, L. (1976). Reaction of lectins with human erythrocytes. III. Surface charge density and agglutination. Exp Cell Res 98, 273-276.
Seow, A., Yuan, J.M., Sun, C.L., Van Den Berg, D., Lee, H.P., and Yu, M.C. (2002). Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis 23, 2055-2061.
Shannon, L.M., Hankins, C.N., and Strosberg, A.D. (1981). Enzymatic phytohemagglutinins: Their relation to 'classic' legume phytohemagglutinins. In Lectins─Biology, Biochemistry, Clinical Biochemistry, T.C. Bog-Hansen, and E. van Driessche, eds. (Berlin, de Gruyter), pp. 81-91
Sharma, A., Ng, T.B., Wong, J.H., and Lin, P. (2009). Purification and characterization of a lectin from Phaseolus vulgaris cv. (Anasazi beans). J Biomed Biotechnol 2009, 929568.
Sharon, N., and Lis, H. (1972). Lectins: cell-agglutinating and sugar-specific proteins. Science 177, 949-959.
Sharon, N., and Lis, H. (2002). How proteins bind carbohydrates: lessons from legume lectins. J Agric Food Chem 50, 6586-6591.
Sharon, N., and Lis, H. (2003). Detection, occurence and isolation. In Lectins (Dordrecht, The Netherlands, Springer), pp. 33-61.
Sharon, N., and Lis, H. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R-62R.
Silva, F.P., Jr., Alexandre, G.M., Ramos, C.H., and De-Simone, S.G. (2008). On the quaternary structure of a C-type lectin from Bothrops jararacussu venom--BJ-32 (BjcuL). Toxicon 52, 944-953.
Spaink, H.P. (2000). Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54, 257-288.
Stinissen, H.M., Peumans, W.J., and Delanghe, E. (1984). Abscisic acid promotes lectin biosynthesis in developing and germinating rice embryos. Plant Cell Rep 3, 55-59.
Stoolman, L.M. (1989). Adhesion molecules controlling lymphocyte migration. Cell 56, 907-910.
Sumner, J.B. (1919). The globulins of the jack bean, Canavalia ensiformis. J Biol Chem 37, 137-142.
Sumner, J.B., and Howell, S.F. (1936). Identification of hemagglutinin of jack bean with concanavalin A. J Bacteriol 32, 227-237.
Suseelan, K.N., Bhagwath, A., Pandey, R., and Gopalakrishna, T. (2007). Characterization of Con C, a lectin from Canavalia cathartica Thouars seeds. Food Chemistry 104, 528-535.
Tortora, G.J., Funke, B.R., and Case, C.L. (2009). Microbiology: An Introduction, 10th edn (San Francisco, USA, Pearson Benjamin-Cummings).
Van Damme, E.J.M., Peumans, W.J., Barre, A., and Rouge, P. (1998). Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17, 575-692.
Vasta, G.R. (1992). Invertebrate lectins: distribution, synthesis, molecular biology and function. In Glycoconjugates, H.J. Allen, and E.C. Kisailus, eds. (New York, Marcel Dekker), pp. 593-634.
Verma, R.J., Nambiar, D., and Chinoy, N.J. (2006). Toxicological effects of Carica papaya seed extract on spermatozoa of mice. J Appl Toxicol 26, 533-535.
Vitale, A., and Chrispeels, M.J. (1992). Sorting of proteins to the vacuoles of plant cells. Bioessays 14, 151-160.
Vyas, D.K., and Jacob, D. (1984). Effect of papaya (C. papaya) seeds on the reproductive structures and fertility of the male rabbit. Indian Zool 8, 105-108.
Walker, J.R., Nagar, B., Young, N.M., Hirama, T., and Rini, J.M. (2004). X-ray crystal structure of a galactose-specific C-type lectin possessing a novel decameric quaternary structure. Biochem 43, 3783-3792.
Wang, T.H., Lee, M.H., and Su, N.W. (2009). Screening of lectins by an enzyme-linked adsorbent assay. Food Chem 113, 1218-1225.
Wiley, D.C., and Skehel, J.J. (1987). The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56, 365-394.
Woodley, J.F., and Naisbett, B. (1988). The potential of lectins for delaying the intestinal transit of drugs. Proc Int Symp Control Rel Bioact Mater 15, 125-126.
Yamaguchi, Y. (2000). Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57, 276-289.
Zhao, B., Seow, A., Lee, E.J.D., Poh, W.T., Teh, M., Eng, P., Wang, Y.T., Tan, W.C., Yu, M.C., and Lee, H.P. (2001). Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore. Cancer Epidem Biomar 10, 1063-1067.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46257-
dc.description.abstract本研究利用先前發表之酵素聯結親和吸附分析法(Food Chem. 2009, 113: 1218-1225),以聚丙烯醯胺聯結N-乙醯半乳糖胺(GalNAc)做為篩選凝集素之介質,發現木瓜子中含有與GalNAc專一結合之凝集素。檢驗不同成熟度之木瓜子與凝集素含量的關係,發現青木瓜中未成熟之白子具有較高的凝集素比活性。本研究依下列方式分離木瓜子凝集素:首先將樣品冷凍乾燥後磨碎過篩(40 mesh),以20倍(v/w)PBS buffer(pH 7.4)於4oC萃取隔夜,離心後取上清液加硫酸銨至70%飽和度,離心取沉澱回溶透析後,再經超過濾進行分子量區分。將分子量大於50 kDa的區分,以HiTrap CM FF進行離子交換層析及Superdex 200 GL膠體過濾區分後,分離得純化之凝集素(Carica papaya lectin, CPL)。SDS-PAGE結果顯示,於38及40 kDa分別有一明顯的色帶;Shodex KW-804膠體過濾層析顯示,原態CPL的分子量為804 ± 30 kDa,推測CPL應由α、β兩個次單元組成的多聚體。溫度及酸鹼安定性方面,CPL在70oC會失活,且於pH 6.0~8.0之間皆保有最高的活性。以EDTA和Ca2+、Mg2+、Mn2+、Zn2+處理CPL,發現其不需要二價金屬離子來維持活性。醣類抑制試驗結果指出,CPL對GalNAc有顯著特異性,其次是lactose。對人類不同血型紅血球的凝集能力結果顯示,CPL對A型血球具有較高的凝集活性。另外,以自行衍生的GalNAc-Sepharose 6B親和性管柱來純化CPL,可提高其純度達粗萃液的6000倍。zh_TW
dc.description.abstractBased on our previous study, a novel N-acetylgalactosamine binding protein in papaya seed (Carica papaya lecin, CPL) was discovered by GalNAc-polyacrylamide based enzyme-linked adsorbent assay (Food Chem. 2009, 113: 1218-1225). Papaya seeds with different maturity were collected, and the extracts of seeds in green papaya fruits shows relatively high activity. Further purification of CPL was conducted as following: freeze-dried papaya seeds were ground into powder, extracted with 20 folds (w/v) of 50 mM phosphate buffered saline (pH 7.4) at 4°C overnight, centrifuged and collected the supernatant, added ammonium sulfate to 70% saturation. Precipitations were resuspended and dialyzed against PBS, then fractionated by a 50 kDa MWCO ultrafiltration. The retentate was further purified by HiTrap CM FF ion exchange chromatography and Superdex 200 GL gel filtration chromatography. SDS-PAGE and HPLC gel filtration indicated that CPL is a polymer with a molecular mass of 804 ± 30 kDa and composed of two different subunits of 38 and 40 kDa associated by non-covalent bonds. It was heat stable until up to 70oC for 30 min and showed optimum sugar-binding activity from pH 6.0 to 8.0. Also, CPL did not require Ca2+, Mg2+, Mn2+, Zn2+for its activity. Of various sugars tested, the lectin was best inhibited by GalNAc. CPL agglutinated all trypsinized human RBC types, with a slight preference for the A blood group which immunodeterminant is GalNAc. Based on the specificity, we performed an alternative ripid, simple purification method via GalNAc-Sepharose 6B affinity chromatography column, and gave the lectin with a 6000-fold purification as compared to the crude extract.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:00:21Z (GMT). No. of bitstreams: 1
ntu-99-R97623007-1.pdf: 27575592 bytes, checksum: a3eee534a6e7b42b8bedfc7379961d30 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄 I
表目錄 VI
縮寫表 VII
中文摘要 X
英文摘要 XI
第一章 前言 1
第二章 文獻回顧 3
第一節 凝集素之介紹 3
1. 凝集素之定義與特性 3
2. 凝集素之研究發展簡史 5
3. 凝集素與醣類結合之機制 8
4. 凝集素之檢測 9
5. 凝集素之來源與分類 11
5.1 植物來源凝集素(Plant lectins) 11
5.2 動物來源凝集素(Animal lectins) 14
5.3 其他來源凝集素 17
6. 植物凝集素於自然界之功能 18
6.1 凝集素可做為植物天然的防禦蛋白 18
6.2 凝集素參與植物和固氮細菌的共生作用 20
7. 植物凝集素之應用 21
7.1 植物凝集素做為分析工具 21
7.2 植物凝集素可刺激細胞增生 22
7.3 植物凝集素用於疾病診斷與治療 22
7.4 植物凝集素的其他應用 24
第二節 番木瓜簡介 26
第三節 番木瓜種子之相關研究 29
1. 木瓜子中之異硫氰酸苄酯(Benzyl isothiocyanate, BITC) 29
2. 木瓜子萃取物對生殖能力之影響 31
第三章 材料與方法 32
第一節 實驗大綱 32
第二節 實驗材料 32
第三節 實驗儀器 35
第四節 實驗方法 36
1. 不同成熟度木瓜子之凝集素活性檢測 36
1.1 樣品前處理與凝集素活性追蹤 36
1.2 統計分析 36
2. 木瓜子凝集素之純化與生化特性分析 37
2.1 凝集素之分離與純化 37
2.2 蛋白質含量測定 38
2.3 凝集素活性追蹤 38
2.4 膠體電泳 40
2.5 熱安定性試驗 40
2.6 酸鹼值對凝集素活性之影響 40
2.7 還原劑對凝集素活性之影響 41
2.8 二價金屬離子對凝集素活性之影響 41
2.9 醣類抑制試驗 41
2.10 LC-MS/MS 42
3. 利用親和性膠體純化木瓜子凝集素 43
3.1 親和性膠體製備 43
3.2 親和性管柱層析 43
3.3 膠體過濾管柱層析 44
第四章 結果與討論 45
第一節 不同成熟度木瓜子之凝集素活性檢測 45
第二節 木瓜子凝集素之純化與生化特性分析 49
1. 木瓜子凝集素之分離與純化 49
2. 膠體電泳與分子量測定 50
3. 熱處理、酸鹼值及還原劑對凝集素活性之影響 51
4. 二價金屬離子對凝集素活性之影響 51
5. 醣類抑制試驗 51
6. 不同紅血球之凝集狀況分析 52
7. LC-MS/MS 54
第三節 利用親和性膠體純化木瓜子凝集素 72
第五章 結論 79
第六章 參考文獻 80
附錄一 90
附錄二 91
附錄三 92
dc.language.isozh-TW
dc.title番木瓜種子凝集素之純化與生化特性探討zh_TW
dc.titlePurification and Biochemical Properties of an N-acetylgalactosamine Specific Lectin from Papaya (Carica papaya) Seedsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李敏雄,許輔,林銘澤,古國隆
dc.subject.keyword番木瓜,乙醯半乳糖胺,親醣蛋白,凝集素,zh_TW
dc.subject.keywordpapaya,N-acetylgalactosamine,suger-binding protein,lectin,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2010-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
26.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved