請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46255完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊吉水 | |
| dc.contributor.author | Ying-Chen Chen | en |
| dc.contributor.author | 陳盈蓁 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:00:15Z | - |
| dc.date.available | 2015-07-29 | |
| dc.date.copyright | 2010-07-29 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | (1) (a) Balzani, V.; Credi, A.; Venturi, M. Molecular devices and machines : concepts and perspectives for the nanoworld; Wiley-VCH: Weinheim, 2008. (b) Credi, A. Aust. J. Chem. 2006, 59, 157-169.
(2) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M. Acc. Chem. Res. 2001, 34, 445-455. (3) Elizarov, A. M.; Chiu, S.-H.; Stoddart, J. F. J. Org. Chem. 2002, 67, 9175-9181. (4) Koumura, N.; Geertsema, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 5037-5051. (5) Wang, Q.-C.; Qu, D.-H.; Ren, J.; Chen, K.; Tian, H. Angew. Chem. Int. Ed. 2004, 43, 2661-2665. (6) Saha, S.; Stoddart, J. F. Chem. Soc. Rev. 2007, 36, 77-92. (7) Basheer, M. C.; Oka, Y.; Mathews, M.; Tamaoki, N. Chem. Eur. J. 2010, 16, 3489-3496. (8) Mateo-Alonso, A.; Fioravanti, G.; Marcaccio, M.; Paolucci, F.; Rahman, G. M. A.; Ehli, C.; Guldi, D. M.; Prato, M. Chem. Commun. 2007, 1945-1947. (9) Amendola, V.; Fabbrizzi, L.; Mangano, C.; Pallavicini, P. Acc. Chem. Res. 2001, 34, 488-493. (10) Durola, F.; Lux, J.; Sauvage, J.-P. Chem. Eur. J. 2009, 15, 4124-4134. (11) Korybut-Daszkiewicz, B.; Wieckowska, A.; Bilewicz, R.; Domagala, S.; Woźniak, K. Angew. Chem. Int. Ed. 2004, 43, 1668-1672. (12) Arai, T.; Tokumaru, K. Chem. Rev. 1993, 93, 23-39. (13) Arai, T.; Karatsu, T.; Sakuragi, H.; Tokumari, K. Tetrahedron Lett. 1983, 24, 2873-2876. (14) Lewis, F. D.; Yang, J.-S. J. Phys. Chem. 1996, 100, 14560-14568. (15) Norikane, Y.; Nakayama, N.; Tamaoki, N.; Arai, T.; Nagashima, U. J. Phys. Chem. A 2003, 107, 8659-8664. (16) Lewis, F. D.; Petisce, J. R.; Oxman, J. D.; Nepras, M. J. J. Am. Chem. Soc. 1985, 107, 203-207. (17) Maccarone, E.; Mamo, A.; Scarlata, G.; Torre, M. J. Org. Chem. 1979, 44, 2896-2901. (18) Dong, J.; Abulwerdi, F.; Baldridge, A.; Kowalik, J.; Solntsev, K. M.; Tolbert, L. M. J. Am. Chem. Soc. 2008, 130, 14096-14098. (19) Bartlett, P. D.; Ryan, M. J.; Cohen, S. G. J. Am. Chem. Soc. 1942, 64, 2649-2653. (20) Skvarchenko, V. R. Dokl. Akad. Nauk SSSR 1974, 216, 110. (21) Huebner, C. F.; Puckett, R. T.; Brzechffa, M.; Schwartz, S. L. Tetrahedron Lett. 1970, 11, 359-362. (22) Shahlai, K.; Hart, H. J. Org. Chem. 1991, 56, 6905-6912. (23) Witting, G.; Ludwig, R. Angew. Chem. 1956, 68, 40. (24) Hart, H.; Shamouilian, S.; Takehira, Y. J. Org. Chem. 1981, 46, 4427-4432. (25) Kelly, T. R.; Bowyer, M. C.; Bhaskar, K. V.; Bebbington, D.; Garcia, A.; Lang, F.; Kim, M. H.; Jette, M. P. J. Am. Chem. Soc. 1994, 116, 3657-3658. (26) Kelly, T. R.; Sestelo, J. P.; Tellitu, I. J. Org. Chem. 1998, 63, 3655-3665. (27) Kelly, T. R.; De Silva, H.; Silva, R. A. Nature 1999, 401, 150-152. (28) Annunziata, R.; Benaglia, M.; Cinquini, M.; Raimondi, L.; Cozzi, F. J. Phys. Org. Chem. 2004, 17, 749-751. (29) Yang, J.-S.; Huang, Y.-T.; Ho, J.-H.; Sun, W.-T.; Huang, H.-H.; Lin, Y.-C.; Huang, S.-J.; Huang, S.-L.; Lu, H.-F.; Chao, I. Org. Lett. 2008, 10, 2279-2282. (30) Yang, J.-S.; Ko, C.-W. J. Org. Chem. 2006, 71, 844-847. (31) Berthelette, C.; McCooye, C.; Leblanc, Y.; Trimble, L. A.; Tsou, N. N. J. Org. Chem. 1997, 62, 4339-4342. (32) Bautista, F. M.; Campelo, J. M.; Garcia, A.; Luna, D.; Marinas, J. M.; Romero, A. A. J. Chem. Soc., Perkin Trans. 2 2002, 227-234. (33) Atkins, P. W.; De Paula, J. Atkins' Physical chemistry; Oxford University Press: New York, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46255 | - |
| dc.description.abstract | 本篇論文主要是合成與探討新型分子煞車系統(化合物1),以五苯荑分子當作轉子,茚酮分子之羰基當作煞車器,以期應用於分子機械元件之設計。我們利用變溫1H 和 13C NMR圖譜、DFT理論計算,探討轉子之旋轉動能,且結合光化學與電化學控制其異構化行為,使煞車行為能夠順利的進行轉換。由於在化合物Z-1中羰基對五苯荑之立體障礙影響較大,使得在室溫下(298 K),當從化合物E-1(煞車關閉)轉換為化合物Z-1(煞車啟動)時,旋轉速率會減慢約500倍。
在乙腈中化合物E-1以290 nm波長之光源激發,當達到光反應穩定狀態時,兩者的比例為11:89(E-1:Z-1),此乃由於化合物E-1之異構化量子產率比化合物Z-1來得大,因此經由光異構化反應可有效率的得到化合物Z-1;另一方面,利用電化學的方法,經由陰離子自由基之中間體,化合物Z-1能夠有效率的異構化為化合物E-1,轉換效率高達96 %,所以E-Z之間的轉換不僅可逆,且總轉換效率可高達85 %。雖然也能利用酸催化進行加成-離去反應,將使化合物Z-1有效率的異構化為化合物E-1(96 %),但由於加入化學物質為不理想的方法,因此最後我們選用光化學和電化學方法使化合物1能夠有效率且連續的進行E-Z之間的交替異構化,使分子煞車系統順利的運作。 | zh_TW |
| dc.description.abstract | In this thesis, the synthesis and brake performance of a new molecular system (1) that consists of a pentiptycene rotor and an indanone brake are reported. The rotation kinetics of the rotor was probed by both variable-temperature 1H and 13C NMR spectroscopy and DFT calculations, and the switching between the brake-on and brake-off states were conducted by a combination of photochemical and electrochemical isomerization. Due to a larger steric hindrance between the rotor and the brake units in Z-1 than E-1, rotation of the rotor is slowed down by 500-fold at room temperature (298 K) on going from E-1 to Z-1, corresponding to the brake-off and brake-on states, respectively. The E-1 → Z-1 photoisomerization in acetonitrile is efficient and reaches a 11:89 (E-1:Z-1)ratio in the photostationary state upon excitation at 290 nm, attributable to a larger isomerization quantum efficiency for E-1 vs Z-1. An efficient Z-1 → E-1 isomerization (96%) was also achieved through the radical anionic intermediates by electro chemical treatments. Consequently, the reversibility of E-Z switching of 1 is as high as 85%. The Z-1 → E-1 acid-catalyzed isomerization is also efficient (96%) through addition-elimination mechanism, but chemical energy is not as clean as light or electrical energy. Thus, we adopt alternating photochemical and electrochemical treatments to carry out consecutive E-Z switching of 1. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:00:15Z (GMT). No. of bitstreams: 1 ntu-99-R97223146-1.pdf: 10194037 bytes, checksum: 51acf7bd8c4c97ec3e5c65516e8f93d9 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 謝誌 ..................................................... I
中文摘要................................................. II Abstract................................................ III 目錄..................................................... IV 表目錄....................................................XI 附圖目錄................................................ XII 第一章 前言............................................... 1 1-1 簡介 ................................................. 1 1-2 人造分子機械 ......................................... 1 1-2-1 人造分子機械之特色.................................. 1 1-2-1 以化學能驅動分子機械 ............................... 3 1-2-2 以光化學驅動分子機械 ............................... 3 1-2-3 以電化學驅動分子機械 ............................... 6 1-3異構化作用(isomerization)............................ 8 1-3-1光異構化(photoisomerization) ...................... 8 1-3-2電化學異構化 ....................................... 10 1-3-3 酸催化異構化(acid-catalyzed isomerization) ...... 11 1-4 苯荑(Iptycene)分子之介紹 .......................... 13 1-4-1 苯荑分子的結構與命名 .............................. 13 1-4-2 三苯荑分子 ........................................ 14 1-4-3 五苯荑分子 ........................................ 14 1-4-4苯荑分子於分子機械之應用 ........................... 15 1-5 研究動機 ............................................ 18 第二章 結果與討論 ....................................... 20 2-1 化合物之合成 ........................................ 20 2-1-1 目標化合物 ........................................ 20 2-1-2 目標化合物之合成 .................................. 20 2-2 化合物1之結構與性質 ................................. 23 2-2-1 理論計算 .......................................... 23 2-2-2 化合物1之結構與NMR圖譜 ............................ 25 2-2-3 化合物1之變溫1H-NMR及13C-NMR圖譜模擬 .............. 30 2-4 化合物1與2之光異構化性質 ............................ 38 2-4-1化合物1及2之吸收光譜 ............................... 38 2-4-2 化合物1之光異構化作用 ............................. 39 2-4-3 化合物2之光異構化作用 ............................. 40 2-4-4 化合物1、2之光學異構化量子產率 .................... 41 2-5 化合物1與2之電異構化性質 ............................ 43 2-5-1 化合物1之電化學異構化作用 ......................... 43 2-5-2 比較化合物1及化合物2之電化學異構化作用差異 ........ 45 2-6 化合物1之光化學E→Z與電化學Z→E轉換 ................. 45 2-7 化合物1之酸催化異構化性質 ........................... 46 2-7-1 化合物1之酸催化異構化作用 ......................... 46 2-7-2 比較化合物1及化合物2之酸催化異構化作用差異......... 49 2-7-3 理論計算 .......................................... 51 第三章 結論 ............................................. 54 第四章 實驗部分 ......................................... 55 4-1 實驗藥品與溶劑 ...................................... 55 4-2 實驗儀器 ............................................ 57 4-3 實驗步驟 ............................................ 63 參考文獻 ................................................ 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光化學 | zh_TW |
| dc.subject | 分子機械 | zh_TW |
| dc.subject | 異構化 | zh_TW |
| dc.subject | 電化學 | zh_TW |
| dc.subject | isomerization | en |
| dc.subject | photochemistry | en |
| dc.subject | molecular machine | en |
| dc.subject | electrochemistry | en |
| dc.title | 以五苯荑-烯酮衍生物為主體之分子煞車合成與性質研究 | zh_TW |
| dc.title | Synthesis and Characterization of A Pentiptycene-Enone-Derived Molecular Brake | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林英智,鍾文聖,趙奕姼 | |
| dc.subject.keyword | 分子機械,異構化,光化學,電化學, | zh_TW |
| dc.subject.keyword | molecular machine,isomerization,photochemistry,electrochemistry, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 9.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
