請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46252完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王安邦(Wang, An-Bang) | |
| dc.contributor.author | Yi-Wei Lin | en |
| dc.contributor.author | 林義暐 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:00:04Z | - |
| dc.date.available | 2015-07-30 | |
| dc.date.copyright | 2010-07-30 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-28 | |
| dc.identifier.citation | 1. Nam-Trung Nguyen and Zhigang Wu, 'Micromixers—a review', J. Micromech. Microeng. 15 (2005) R1–R16
2. Ali Asgar S Bhagat, Erik T K Peterson and Ian Papautsky, 'A passive planar micromixer with obstructions for mixing at low Reynolds numbers', J. Micromech. Microeng. 17 (2007) 1017–1024 3. Andrew G. Hadd, Daniel E. Raymond, John W. Halliwell, Stephen C. Jacobson, and J. Michael Ramsey, 'Microchip Device for Performing Enzyme Assays', Anal. Chem. 1997, 69, 3407-3412 4. Abraham D. Stroock, Stephan K. W. Dertinger, Armand Ajdari, Igor Mezic, Howard A. Stone, George M. Whitesides, 'Chaotic Mixer for Microchannels', Science 295, 647 (2002) 5. Norbert Schwesinger, Thomas Frank and Helmut Wurmus, 'A modular microfluid system with an integrated micromixer', J. Micromech. Microeng. 6 (1996) 99–102. 6. Ryo Miyake, The0 S. J. Lammerink, Miko Elwenspoek, Jan H. J. Fluitman, 'Micro Mixer with Fast Diffusion', Proc. MEMS’93, 6th IEEE Int. Workshop Micro Electromechanical System (San Diego, CA) pp 248–53, 1993 7. Hengzi Wang, Pio Iovenitti, Erol Harvey and Syed Masood, 'Numerical investigation of mixing in microchannels with patterned grooves', J. Micromech. Microeng. 13 (2003) 801–808 8. Virginie Mengeaud, Jacques Josserand, and Hubert H. Girault, 'Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study', Anal. Chem. 2002, 74, 4279-4286 9. Johnson T J, Ross D and Locascio L E, 'Rapid microfluidic mixing', Anal. Chem. 74 45–51, 2002 10. Abraham D. Stroock, Stephan K. W. Dertinger, Armand Ajdari, Igor Mezi , Howard A. Stone, George M. Whitesides, 'Chaotic mixer for microchannels', Science 295 647–51, 2002 11. Kazuo Hosokawa, Teruo Fujii, and Isao Endo, 'droplet-based nano/picoliter mixer using hydrophobic microcapillary vent', Proc the IEEE International Workshop Micro Electromechanical System (Piscataway, NJ, USA) pp 388–93, 1999 12. Phil Paik,* Vamsee K. Pamula* and Richard B. Fair, 'Rapid droplet mixers for digital microfluidic systems', Lab Chip, 2003, 3, 253–259 13. Helen Song, Michelle R. Bringer, Joshua D. Tice, Cory J. Gerdts, Rustem F. Ismagilov, 'Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels', Appl. Phys. Lett. 83 4664–6, 2003 14. Stephan K. W. Dertinger, Daniel T. Chiu, Noo Li Jeon, and George M. Whitesides, 'Generation of Gradients Having Complex Shapes Using Microfluidic Networks', Anal. Chem. 2001, 73, 1240-1246 15. 'method and apparatus for gradient generation', united states patent, patent no.:6,705,357 B2, Mar.16, 2004 16. Bryan R. Gorman Æ John P. Wikswo, 'Characterization of transport in microfluidic gradient generators', Microfluid Nanofluid (2008) 4:273–285 17. Kohei Motoo & Naoya Toda & Fumihito Arai &Toshio Fukuda & Kosuke Sekiyama &Masahiro Nakajima, 'Generation of concentration gradient from a wave-like pattern by high frequency vibration of liquid–liquid interface', Biomed Microdevices (2008) 10:329–335 18. Daniel Irimia, Dan A Geba, and Mehmet Toner, 'Universal Microfluidic Gradient Generator', Anal. Chem. 2006, 78, 3472-3477 19. Hongkai Wu, Bo Huang, Richard N. Zare, 'Generation of Complex, Static Solution Gradients in Microfluidic Channels', J. AM. CHEM. SOC. 2006, 128, 4194-4195 20. Nicolae Damean, Luis F. Olguin, Florian Hollfelder, Chris Abell and Wilhelm T. S. Huck, 'Simultaneous measurement of reactions in microdroplets filled by concentration gradients', Lab Chip, 2009, 9, 1707–1713 21. Robert M. Lorenz, Gina S. Fiorini, Gavin D.M. Jeffries, David S.W. Lim, Mingyan He, Daniel T. Chiu, 'Simultaneous generation of multiple aqueous droplets in a microfluidic device', analytica chimica acta 630 (2008) 124–130 22. Takasi Nisisako, Toru Torii and Toshiro Higuchi, 'Droplet formation in a microchannel network', Lab Chip, 2002, 2, 24–26 23. Pierre Guillot and Annie Colin, 'Stability of parallel flows in a microchannel after a T junction', PHYSICAL REVIEW E 72, 066301 2005 24. Piotr Garstecki, Michael J. Fuerstman, Howard A. Stone and George M. Whitesides, 'Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up', Lab Chip, 2006, 6, 437–446 25. Amit Gupta, S. M. Sohel Murshed, and Ranganathan Kumar, 'Droplet formation and stability of flows in a microfluidic T-junction', APPLIED PHYSICS LETTERS 94, 164107 2009 26. Yen-Heng Lin, Chun-Hong Lee, and Gwo-Bin Lee, 'Droplet Formation Utilizing Controllable Moving-Wall Structures for Double-Emulsion Applications', JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 17, NO. 3, JUNE 2008 27. Alvin U. Chen, Patrick K. Notz, and Osman A. Basaran, 'Computational and Experimental Analysis of Pinch-Off and Scaling', PHYSICAL REVIEW LETTERS, 0031-9007/02/88(17)/174501(4), 29APRIL 2002 28. Sung Kwon Cho, Hyejin Moon, and Chang-Jin Kim, 'Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits', JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 1, FEBRUARY 2003 29. 'Geometrically Mediated Breakup of Drops in Microfluidic Devices', PHYSICAL REVIEW LETTERS, 0031-9007/04/92(5)/054503(4), 6 FEBRUARY 2004 30. Laure Ménétrier-Deremble and Patrick Tabeling, 'Droplet breakup in microfluidic junctions of arbitrary angles', PHYSICAL REVIEW E 74, 035303R2006 31. M.-C. Jullien, M.-J. Tsang Mui Ching, C. Cohen, L. Menetrier, and P. Tabeling, 'Droplet breakup in microfluidic T-junctions at small capillary numbers', PHYSICS OF FLUIDS 21, 072001 2009 32. Masumi Yamada, Saki Doi, Hirosuke Maenaka, Masahiro Yasuda, Minoru Seki, 'Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis', Journal of Colloid and Interface Science 321 (2008) 401–407 33. 龐寧寧, '漫談布朗運動',物理雙月刊(28卷一期),2006年2月 34. Minsoung Rhee and Mark A. Burns, 'Drop Mixing in a Microchannel for Lab-on-a-Chip Platforms', Langmuir 2008, 24, 590-601 35. 李蕢至,'氣動式矽膠薄膜微閥門之研製',國立台灣大學應用力學研究所,2005年7月 36. Piotr Garstecki, Michael J. Fuerstman, Howard A. Stone and George M. Whitesides, 'Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up', Lab Chip, 2006, 6, 437–446 37. M. DE MENECH, P. GARSTECKI, F. JOUSSE AND H. A. STONE, 'Transition from squeezing to dripping in a microfluidic T-shaped junction', J. Fluid Mech. (2008), vol. 595, pp. 141–161. 38. Fang Guo • Bin Chen, 'Numerical Study on Taylor Bubble Formation in a Micro-channel T-Junction Using VOF Method', Microgravity Sci. Technol (2009) 21 (Suppl 1):S51–S58 39. Carsten Cramer, Peter Fischer, Erich J.Windhab, 'Dropformation in a co-flowing ambient fluid', Chemical Engineering Science 59 (2004) 3045 – 3058 40. Thomas Ward, Magalie Faivre, Manouk Abkarian, Howard A. Stone, 'Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping', Electrophoresis 2005, 26, 3716–3724 41. J.-P. Ravena, P. Marmottant, and F. Graner, 'Dry microfoams: formation and flow in a confined channel', Eur. Phys. J. B 51, 137–143 (2006) 42. I-Chun Lin, Yi-Hua Wang, Ming-Che Hsieh, and An-Bang Wang, 'Generation of micro-two-phase-flow for “Air-Bubble Coating', ICMF 2007, Leipzig, Germany, July 9 – 13, 2007 43. R Ahmed and T B Jones, 'Optimized liquid DEP droplet dispensing', J. Micromech. Microeng. 17 (2007) 1052–1058 44. Darren R. Link, Erwan Grasland-Mongrain, Agnes Duri, Flavie Sarrazin, Zhengdong Cheng, Galder Cristobal,ManuelMarquez, and David A.Weitz, 'Electric Control of Droplets in Microfluidic Devices', Angew. Chem. Int. Ed. 2006, 45, 2556 –2560 45. Avishay Bransky, Natanel Korin, Maria Khoury and Shulamit Levenberg, 'A microfluidic droplet generator based on a piezoelectric actuator', Lab Chip, 2009, 9, 516–520 46. S. M. Sohel Murshed, Say Hwa Tan, Nam Trung Nguyen, Teck Neng Wong, Levent Yobas, 'Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction', Microfluid Nanofluid (2009) 6:253–259 47. Adam R. Abate, Mark B. Romanowsky, Jeremy J. Agresti, and David A. Weitz, 'Valve-based flow focusing for drop formation', APPLIED PHYSICS LETTERS 94, 023503 2009 48. Jean-Christophe Galas, Denis Bartolo, Vincent Studer, 'Active connectors for microfluidic drops on demand', New Journal of Physics 11 (2009) 075027 49. H. Song, J. D. Tice and R. F. Ismagilov, Angew. Chem.-Int. Edit., 2003, 42, 768-772. 50. A. Gunther, S. A. Khan, M. Thalmann, F. Trachsel and K. F. Jensen, Lab Chip, 2004, 4, 278-286. 51. B. Zheng, J. D. Tice, L. S. Roach and R. F. Ismagilov, Angew. Chem.-Int. Edit., 2004, 43, 2508-2511. 52. M. Curcio and J. Roeraade, Anal. Chem., 2003, 75, 1-7. 53. G. Dummann, U. Quittmann, L. Groschel, D. W. Agar, O. Worz and K. Morgenschweis, Catal. Today, 2003, 79, 433-439. 54. J. R. Burns and C. Ramshaw, Lab Chip, 2001, 1, 10-15. 55. H. Song, D. L. Chen and R. F. Ismagilov, Angew. Chem.-Int. Edit., 2006, 45, 7336-7356. 56. A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone and D. A. Weitz, Science, 2005, 308, 537-541. 57. M. Prakash and N. Gershenfeld, Science, 2007, 315, 832-835. 58. M. J. Fuerstman, P. Garstecki and G. M. Whitesides, Science, 2007, 315, 828-832. 59.'Self-diffusion in normal and heavy water in the range 1-45°'R. Mills, The Journal of Physical Chemistry, Vol. 77, No. 5, 1973 60.Nuclear Magnetic Resonance Laboratory, Department of Chemistry, National Taiwan University and Institutde of Atomic and Molecular Science, Academia Sinica | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46252 | - |
| dc.description.abstract | 本研究已初步的發展出一新型的微二相流濃度梯度產生器;此濃度梯度產生器藉由微二相流的產生、分離與結合,成功的產生出具有濃度差異的微液滴。
壓克力微加工為本實驗用於晶片製作的製程方法,有別於微機電製程,其好處為降低製作成本,且大大的縮短利用微機電製程所花費的時間;因近年來實驗室晶片(lab on a chip)的蓬勃發展,與晶片需具備有高的整合性,故本研究考慮到微二相流產生晶片其下游若需與其他晶片整合時,其因另一晶片所造成的阻抗改變是否會影響到微二相流產生的尺寸?然而在針對微二相流產生的文獻中,並無這方面的相關研究,故本研究在微二相流產生部份針對流道出口背壓變化的影響進行討論;且針對不同的流道比例α(定義為:連續相流道寬度/不連續相流道寬度比),亦進行探討,發現在本實驗所給予最大背壓6.8kpa條件下,無論α為何,都不影響微二相流的產生尺寸;另外也發現,出口背壓的控制,可使微二相流的產生有很好的重複性,吾人亦與文獻比對,本文數據明顯優於文獻上所得的結果。而關於α參數的影響:α越大,液滴的尺寸會越小。而無論在任何α條件下,液滴的尺寸會隨著連續相黏度的增加而變小。另外文獻上一個無實驗驗證的假設:不連續相的黏度並不影響液滴的產生,本文的實驗結果顯示:不連續相的黏度的增加在不同的α條件下,對於微二相流的尺寸確無明顯的變化,但會影響微二相流產生的型態圖(flow map),意即隨著不連續相的黏度增加,其產生段塞流(slug flow)的區域會隨之變小,故並不盡如文獻上的假設可將不連續相黏度的影響忽略。 另外對於液滴二次分離部份,吾人考慮到晶片使用的簡單性,選擇被動式的液滴二次分離進行研究;並以調控其下游的流阻,以簡易的控制二出口背壓調控液滴二次分離的比例,液滴的最大分離比例可優於文獻上的值達到10.8倍。 | zh_TW |
| dc.description.abstract | In this study, a new type- Micro-two phase flow concentration gradient generator has been demonstrated. This generator generated droplets with different concentration by Micro-two phase flow generation, separation and combination.
Plastic micro-machining is the method to fabricate the chip in this study. The advantages of this method are reducing fabrication cost and saving time. Due to high integration of chip, it is considered that the Micro-two phase flow chip needs to integrate with the other chips. And the resistance from the other chips wether influences the size of droplet generation must be considered. Since, there are no related researches in literatures. This study discusses the effect of integration resistance by changing the back pressure. To different α(Definition is: Continuous phase channel width/dispersed phase channel) were also discussed. The result showed that the outle pressure did not affect the size of droplet different choice of α. Compare to lteratures, it was found that the outlet pressure control would effective improve the uniformity of droplet size in my own research. For effect of α, the droplet size will decrease as increasing of α. In the continuous phase, for different choice of α, the smaller the droplet size is, the lager the viscosity is. Most of them assumed that the viscosity of dispersed phase flow does not affect the size of droplet in the literatures. However, the result in my own research showed that the viscosity of dispersed phase does not affect the size of droplet. But, the droplet generation type (flow map) has obvious influence. With increasing viscosity of dispersed phase flow, the area of slug flow will decrease. So, the viscosity of dispersed phase flow can not be neglected in the research of droplet formation. In addition to separation of droplet, there were many methods of droplet separation including active and passive noes. Considering the simplification of chip, the passive method was chosen in this study. The downstream resistance in passive separation method has an extreme influence on separation ratio. Since the control of downstream rsistance from the past literatures can not satisfy the condition in my study, the simple method which is using back pressure controller to adjust the ratio of droplet separation. And, comparing to the maximum ratio of droplet separation 7.5, my study has already successfully made ratio achive 10.8. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:00:04Z (GMT). No. of bitstreams: 1 ntu-99-R96543069-1.pdf: 12970087 bytes, checksum: 72004b4b8b276df95ec76d30ece2cc87 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XV 符號說明 XVI 第一章 緒論 1 1.1. 前言 1 1.2. 文獻回顧 2 1.2.1. 由擴散機制的角度看微混合器 2 1.2.2. 從幾何外型看微混合器 3 1.2.2.1. 平行疊合微混合器(Parallel lamination micromixer) 3 1.2.2.2. 串聯疊合微混合器(Serial lamination micromixer) 4 1.2.2.3. 注入式微混合器(Injection micromixer) 4 1.2.2.4. 混亂式微混合器(Chaotic miromixer) 4 1.2.2.5. 液滴式微混合器(Droplet micromixer) 5 1.2.3. 濃度梯度產生器之文獻回顧 5 1.2.4. 微二相流產生器之文獻回顧 7 1.2.4.1. 微二相流之特徵型態介紹與其應用 7 1.2.4.2. 微二相流產生及其尺寸控制 9 被動式 9 主動式 13 1.3. 液滴二次分離 16 1.4. 研究動機 18 第二章 實驗儀器與方法 19 2.1. 雷射雕刻機 19 2.2. 微量天平 19 2.3. 真空裝置 19 2.4. 加熱裝置 19 2.5. 注射幫浦裝置 19 2.6. 影像擷取裝置 20 2.7. 影像分析軟體 20 2.8. 低解析度核磁共振儀 20 2.9. 晶片製作 22 第三章 理論分析 24 3.1. 混合機制 24 3.1.1. 擴散作用原理與理論公式 24 3.2. 微二相流產生機制分析 26 3.3. 液滴在微流道裡的混合理論 27 3.3.1. 擴散主導(diffusion-dominated) 27 3.3.2. 不連續相主導(dispersion-dominated) 28 3.3.3. 對流主導(convection-dominated) 29 第四章 實驗結果與討論 31 4.1. 注射幫浦流量校正 31 4.2. 染劑濃度對於擴散係數與混合結果的影響 32 4.2.1. 染劑的重量濃度與擴散係數的關係 32 4.2.2. 染劑的重量濃度與混合結果的關係 33 4.3. PDMS表面特性量測 34 4.3.1. PDMS表面接觸角量測 34 4.3.2. 在親水與疏水性T型流道之二相流產生 35 4.4. T型流道微二相流產生 36 4.5. 出口壓力的控制對上游液滴產生的影響 36 4.5.1. α=1:1、2:1、3:1於不同背壓 37 4.5.2. 出口背壓的控制對於液滴產生均勻性的影響 38 4.5.3. 不同α對於微二相流產生的影響 39 4.5.4. 不同連續相黏度(μc)對於不同α於液滴產生的影響 39 4.5.5. 不同不連續相黏度(μd)對於不同α於液滴產生的影響 41 4.6. 液滴二次分離 44 4.6.1. 無背壓控制之液滴二次分離-分離角度135° 44 4.6.2. 具背壓控制之液滴二次分離-分離角度135° 45 4.7. 微二相流濃度梯度產生 48 第五章 結論與未來展望 50 5.1. 微二相流產生之尺寸控制 50 5.2. 液滴二次分離 51 5.3. 微二相流濃度梯度產生 52 5.4. 未來展望 52 參考文獻 131 | |
| dc.language.iso | zh-TW | |
| dc.subject | 濃度梯度產生器 | zh_TW |
| dc.subject | 微二相流產生 | zh_TW |
| dc.subject | 液滴分離 | zh_TW |
| dc.subject | droplet separation | en |
| dc.subject | concentration gradient gererator | en |
| dc.subject | micro two phase flow generation | en |
| dc.title | 微二相流產生器之研究 | zh_TW |
| dc.title | A Study of Micro-Two Phase Flow Generator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林啟萬(Chii-Wann Lin),黃榮山(Huang, Long-Sun) | |
| dc.subject.keyword | 微二相流產生,液滴分離,濃度梯度產生器, | zh_TW |
| dc.subject.keyword | micro two phase flow generation,droplet separation,concentration gradient gererator, | en |
| dc.relation.page | 135 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 12.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
