請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46245完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭福田 | |
| dc.contributor.author | Chien-Yu Lin | en |
| dc.contributor.author | 林建宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:59:43Z | - |
| dc.date.available | 2015-08-03 | |
| dc.date.copyright | 2010-08-03 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-27 | |
| dc.identifier.citation | [1] A.El-Yadouni,A.Boudrioua,J.C.Loulergue,V.sallet,R.Triboulet,
”Grouwth and optical characterization of ZnO thin films deposited on sapphire substrate by MOCVD technique”,Opt.Master .27(2005) 1391 [2] Pearson’s Handbook of Crystallographic Data 4795 [3] Numerical Data and Functional Relationships in Science and Technology./V.22, Subvolume a. Intrinsic Properties of Group IV ElementsandIII-V,II-VIandI-VIICompounds.,berlin:/Springer-Verlag,/ 1987. [4] Y. Chen et al. , “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization”, J. Appl. Phys., 84, 3912, 1998 [5]旭祥,國立成功大學材料科學與工程學系碩士論文,2000 [6]H.M Cheng,H.C.Hsu,Y.K Tseng,L.J Lin, W.F Hsieh, “Raman scattering and efficient UV photoluminescence from well-Aligned ZnO nanowires epitaxially grown on GaN butter layer “,J.Phys.Chem.B.109(2005)8749 [7]J.Park,H.H.Choi,K.Siebein,R.K.Singh,”Two-step evaporation process for formation of aligned zinc oxide nanowires”,J.Cryst.Growth. 258(2003)342 [8]X.Q.Meng,D.X.Zhao,J.Y.Zhang,D.ZShen,Y.M.Lu,Y.C.Liu,X.W.Fan”G rowth temperature controlled shape variety of ZnO nanowires”, chem.phys.lett.407(2005) [9] M.Yan,H.T. Zhang,E.J.Widjaja,and R.P.H.Chang”Self-assembly of well-aligned gallium-doped zinc oxide nanrods”,J.Appl.Phys. 94(2003)5240. [10] Y.Zhang,R.E.Russo,S.S.Mao”Femtosecond laser assisted growth of ZnO nanowires”,Appl.Phys.Lett.87(2005)133115. [11] Z.W. Liu,C.K.Ong,T.Yu,Z.X.Shwn,Applied Physics Letters, ”Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties”,Appl.Phys.Lett. 88(2006) [12] X. Xing,K.Zhang,H.Xu,F.Fang,H.Shen,J.Zhang,J.Zhu,C.Ye,G.Cao ,D.Sun, G..Chen,”synthesis and electrical properties of ZnO nanowires “,micron.37(2006)370-373 [13] H.Miyashita,T.Satoh,T.Hirate,”Effects of laser ablation in fabrication of ZnO nanorods by chemical vapor deposition”,Superlattices and Microstructures 39(2006)67-74 [14] J.Park,I.Jung,J.H.Moon,B.T.Lee,S.S.Kim,”Temperature induced shape change of highly aligned ZnO nanocolum”,J.Cryst.Growth. [15] B.P.Zhang ,N. T.Binh,Y.Segawa,K.Wakatsuki,N,Usami,”Optical properties of ZnO rods formed by metalorganic chemical vapor deposition”Appl Phys Lett.83(2003)1635 [16] D.J.Lee,J.Y.Park,Y.S.Yun,Y.S.Hong,J.H.Moon,B.T.Lee, ”Comparative studies on the growth behavior of ZnO nanorods by metalorganic chemical vapor deposition depending on the type of substrates “,J.Cryst. Growth.276(2005)458-464 [17] B.P.Zhang,N.T.Binh,Y.Segawa,Y.Kashiwaba,K.Haga, ”Photoluminescence study of ZnO nanorods epitaxially grown on sapphire substrates”,Appl.Phys.Lett.84(2004)586 [18] Bryden, K.J. and Ying, J.Y., “Electrodeposition Synthesis and Hydrogen Absorption Properties of Nanostructured Palladium-Iron Alloys,” Nanostruct. Mater., 9, 485 (1997). [19] Q.Chen,J.Zhang, .Feng,X.H.Wang,L.Luo,Y.L.Shi,Q.S.Xue, C.Wang,J.H.Z hu,Z.Zhu ” Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol–gel technique” Applied Surface Science 241(2005)384-391 [20] Thomann, A.-L., Rozenbaum, J.P., Brault, P., Andreazza-Vignolle, C. and Andreazza, P., “Pd Nanoclusters Grown by Plasma Sputtering Deposition on Amorphous Substrates,” Appl. Surf. Sci., 158, 172 (2000). [21] Jayaraman, V. and Lin, Y.S., “Synthesis and Hydrogen Permeation Properties of Ultrathin Palladium-Silver Alloy Membranes,” J. Membr. Sci., 104, 251 (1995). [22] Nam, S.-E. and Lee, K.-H., “A Study on the Palladium/Nickel Composite Membrane by Vacuum Electrodeposition,” J. Membr.Sci., 170, 91 (2000). [23] Nam, S.-E. and Lee, K.-H., “Hydrogen Separation by Pd Alloy Composite Membranes:Introduction of Diffusion Barrier,” J.Membr. Sci., 192, 177 (2001). [24] J.S.Kim,”Characterization of high quality c-axis oriented ZnO thin films grown by metal organic chemical vapor deposition using zinc acetate as source material”, Thin Solid Films,217,133,1992 [25]吳佳玲,國立交通大學材料科學與工程學系碩士論文,2004 [26] Kamins, T., Polycrystalline silicon for intergraded circuits and displays, KluwerAcademic publisher, Boston, 2nd, 1998 [27] Smith, D. L., Thin-Film Deposition principle & practice, Mcgraw-Hill, USA,1995 [28]Wolf, S., and Tauber, R. N., Silicon processing for the VLSI ERA, Lattice press,USA, 1986 [29] Y. Kashiwaba et al. , “Characteristics of c-axis oriented large grain ZnO films prepared by lowpressure MO-CVD method”, Thin Solid Films, 411, 87–90, 2002 [30] Zhuxi Fu et al. , “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition”, Thin Solid Films, 402, 302–306, 2002 [31] Ye et al, “Substrate temperature dependence of properties of ZnO thin films deposited by LP-MOCVD”,Appl. hys. A .78(2004)761. [32] S. C. Liu ,J. J Wu, “Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si(100)”, J.Mater.Chem.12(2002) 3125. [33] 陳慧英、黃定加、朱秦億”溶膠凝膠法在製備薄膜上之應用”化工 技術第七卷第十一期,1999 年11 月,pp.152-166. [34] 蔡裕榮、周禮君 “以溶膠凝膠法製備透明導電氧化物薄膜的探 討”,國立中正大學碩士論文,民國九十一年 [35] B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962). [36] O. Milosevic, and D. Uskokovic, “Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis”, Mater. Sci. and Eng., A128, 249-252 (1993). [37] O. Milosevic, D. Uskokovic, L. J. Karanovic, M. Tomasevic-Canovic, and M. Trontelj, “Synthesis of ZnO-based varistor precursor powders by means of the reaction spray process”, J. of Mater. Sci., 28, 5211-5217 (1993). [38] O. Milosevic, B. Jordovic, and D. Uskokovic, “Preparation of fine spherical ZnO powders by an ultrasonic spray pyrolysis method”, J. of Mater. Lett., 19[4], 165-170 (1994). [39] Tian-Quan Liu, Osamu Sakurai, Nobuyasu Mizutani, Masanori Kato, “Preparation of spherical fine ZnO particles by the spray pyrolysis method using ultrasonic atomization techniques”, J. of Mater. Sci., 21,3698, (1986). [40] Yuanhua Lin, Zilong Tang, and Zhongtai Zhang, “Preparation of Nanometer Zinc Oxide Powder by Plasma Pyrolysis Technology and Their Application”, J. Am. Ceram. Soc, 83[11], 2869-2871 (2000). [41] D. M. Mattox, “Partcle bombardment effects on thin-film deposition: A review”,J. Vac. Sci. Technol. A, 7 (1989) 1105. [42] J. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., 47 (1984)399. [43]周仕旻 射頻磁控濺鍍具摻雜之氧化鋅透明導電膜成長特性與其 p-n 同/異質接面之製作 國立成功大學博士論文 2008 [44] Benitez, J. “Process Engineering and Design for Air Pollution Control,” PTR Prentice-Hall Inc.,New Jersey, p.466(1993). [45]劉國棟,1993 年,“VOC 管制趨勢展望',工業污染防治,第 48 期,第15~31 頁。 [46] Handbook of organic Industrial Solven,5th edition,1980 [47]王文,『以光纖反應器進行紫外線光觸媒程序分解氣相中苯之研 究』,國立台灣科技大學化學工程研究所博士論文(2003)。 [48] Pralrie, M. R., Evans, L. R.,Stange, B. M., and Matinze, S. L., An “Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals”, Environ. Sci. Technol., 27, 1776-1782, (1993). [49]馬志明,『以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應 行為研究』,國立台灣科技大學化學工程研究所碩士論文(1998)。 [50]王嘉慶,『TiO2 光觸媒對大腸桿菌殺菌作用之探討』國立台灣科 技大學化學工程研究所(2004) [51]吳昌晏『以紫外線/氧化鋅程序分別處理含甲酚及EDTA 水溶液 反應行為之研究』國立台灣科技大學化學工程研究所(2005) [52]江立偉『以紫外線/光觸媒程序處理空氣中苯、甲苯及二甲苯氣體 之反應行為』,國立台灣科技大學化學工程研究所(1999) [53]洪崇軒、袁中新、劉安治『氣相近紫外線/二氧化鈦光催化四氯乙 烯之研究』(1997) [54] Al-Ekabi, H., Butters, B., Delany, D., Holden, W., Powell, T., and Story, J., “The Photocatalytic Destruction of Gaseous Trichloroethylene and Tetrachloroethylene Over Immobilized Titanium Dioxide”, Photocatalytic Purification and Treatment of Water and Air, Esevier, The Netherlands, 719-725(1993). [55]Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G.,Palmisano, L., and Schiavello, M.,”Photocatalytic Oxidation of Gaseous Toluene on Anatase TiO2 Catalyst : Mechanistic Aspects and FT-IR Investigation”, Appl. Catal. B: Environ., 20, 15-27(1999). [56] R. S. Wagner, W. C. Ellis, “ Vapor -liquid-solid mechanism of single crystal growth ”, Appl. Phys. Lett. 4(1964)89. [57] J. J. Wu, S. C. Liu, “ Catalyst-Free Growth and Characterization of ZnO Nanorods “,J. Phys. Chem. B. 106(2002)9546. [58] S. S. Brenner, G. W. Sears, “ Mechanism of whisker growth nature of growth sites ”, Acta Met. 4(1956)268. [59] Sharma, A., Rao, P., Mathur, R. P. and Aneta, S. C., “Photocatalytic reactions of xylidine ponceau on semiconducting zinc oxide powder,”J. Photochem. Photobio. A :Chem., Vol.86, pp.197-200 (1995). [60] Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy,M. and Murugesan, V., “Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2,” Sol. Energ.Mat. Sol. C., Vol.77, pp.65-82 (2003). [61] 莊英良,以紫外線/二氧化鈦程序分別處理含六價鉻及亞素靈水 溶液反應行為之研究,國立台灣工業技術學院化學工程研究所 (1996) [62] Wang, K. H., Tasi, H. H., and Hsieh Y. H., 『The Kinetics of Photocatalytic Degradation of Trichloroethylene in Gas Phase over TiO2 Supported on Glass Bead』, Appl. Catal. B:Environ., 17, 313-320, (1998). [63] Sunada K, Kikuchi Y, Hashimoto K, Studies on photokilling of bacteria on TiO2thin film J. Photochem. Photobiol. A: Chemistry 156: 227-233 (2002). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46245 | - |
| dc.description.abstract | 奈米氧化鋅為一光觸媒且在材料領域上已發展出許多製備技術,而本研究利用已發展成熟之化學氣相沉積法和溶膠凝膠法於濾材上製備不同型態之奈米氧化鋅結構,分別探討氮氣流量、氧氣流量、成長溫度以及燒結時間、燒結溫度、鍍液濃度對於奈米氧化鋅結構的影響。此外,利用經過表面處理後之濾材以紫外光/氧化鋅程序處理氣相丙酮以及大腸桿菌,並評估其最佳之操作條件以及處理效率探討。
根據實驗結果,以化學氣相沉積法在氮氧比6:1、成長溫度在600℃時能產生較理想的六角柱狀氧化鋅,而氮氧比3:1、成長溫度為800℃時能製備出四腳針狀氧化鋅。利用溶膠凝膠法則以濃度0.45M的鍍液配合700℃的燒結溫度和1小時的燒結時間下可製備出圓球形氧化鋅結構,兩者處理丙酮效率以越低濃度、低流速下的處理效率越高,而因圓球形氧化鋅比表面積大於六角柱狀氧化鋅,故整體效率以圓球形氧化鋅高於六角柱狀氧化鋅。大腸桿菌殺菌實驗中,兩者均以越低流速下的處理效率越高,因六角柱狀氧化鋅經激發後產生的電子電洞對多於圓球形氧化鋅,故整體殺菌效率則以六角柱狀氧化鋅優於圓球形氧化鋅。 | zh_TW |
| dc.description.abstract | Nano ZnO is one of common used photocatalyst so that there are many manufacturing methods developed in material science and industrial field. In this study, chemical vapor deposition and sol-gel methods were applied to produce different types of nano structure of ZnO to investigate the effect of different factors with the structure characteristics of ZnO, such as growth temperature, flow rate of carrier gas, flow rate of oxygen gas, sintering temperature, concentration of coating solution and sintering time. These surface treatment techniques were applied on stainless steel meshes to manufacture photocatalyst gas filters coated with nano structure of ZnO. A series of UV/ZnO experiments applying these photocatalyst gas filters were executed to evaluate the decomposing capability to acetone and disinfection ability to E. coli. The influence of operating factors on the treatment efficiencies and the optimum operating parameters were also investigated.
According to the results of chemical vapor deposition method in this study, the hexagonal-shaped ZnO crystal will form under the condition of N2/O2 ratio 6:1, growth temperature 600℃, and whiskers will form under the N2/O2 ratio 3:1, growth temperature 800℃. By sol-gel method, circular-shaped ZnO can be grown under the initial Zinc Acetate dihydrate concentration 0.45 M, sintering temperature 700℃, sintering time one hour. The photocatalyst decomposition efficiency of acetone was elevated with lower flow rate and lower initial concentration of acetone by both these two kinds of nano structure of ZnO. The higher BET surface area of circular-shaped ZnO than that of hexagonal-shaped ZnO can be explained to higher overall efficiency of circular-shaped ZnO.Results in disinfection effects to E.coli showed that lower flow rate can obtain more ascended efficiency for both type of ZnO. But disinfection efficiency of hexagonal-shaped ZnO is better than circular-shaped ZnO because of more electron-hole pairs formed from hexagonal-shaped ZnO than circular-shaped ZnO. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:59:43Z (GMT). No. of bitstreams: 1 ntu-99-R97541101-1.pdf: 6781535 bytes, checksum: f4cae09266f3975fc491c4c69e09d4fd (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝........................................................................................................... I
摘要..........................................................................................................II ABSTRACT............................................................................................III 目錄..........................................................................................................V 圖目錄..................................................................................................VIII 表目錄.................................................................................................... XI 第一章 前言.............................................................................................1 1.1 研究緣起.............................................................................................1 1.2 研究目標.............................................................................................3 第二章 文獻回顧.....................................................................................4 2.1 氧化鋅性質和應用..............................................................................4 2.1.1 基本特性與應用............................................................................4 2.1.2 奈米氧化鋅之光催化特性與優點...............................................7 2.2 奈米結構氧化鋅製備方法和生長機制.............................................8 2.2.1 化學氣相沉積法(CVD)................................................................8 2.2.2 金屬有機化學氣相沉積法(MOCVD) .......................................14 2.2.3 溶膠凝膠法(Sol-gel)...................................................................18 2.2.4 噴霧裂解法(Spray Pyrolysis, SP) ...............................................20 2.2.5 濺鍍法(sputtering) ......................................................................21 2.3 揮發性有機氣體的特性和處理技術...............................................22 2.4 光催化反應理論及分解VOC 與E.coli 之機制..............................30 2.4.1 半導體基本特性.........................................................................30 2.4.2 光催化基本原理及應用.............................................................30 2.4.3 氧化鋅之光催化機制及原理......................................................36 3.1 研究方法...........................................................................................38 3.1.1 實驗設計與規劃.........................................................................38 3.1.2 實驗步驟與方法.........................................................................41 3.2 實驗設備...........................................................................................52 3.2.1 實驗系統裝置.............................................................................52 3.2.2 實驗儀器.....................................................................................54 3.2.3 實驗藥品與氣體.........................................................................57 第四章 結果與討論...............................................................................58 4.1 影響化學氣相沉積法的參數...........................................................58 4.1.1 氮氣流量......................................................................................58 4.1.2 氧氣流量......................................................................................63 4.1.3 成長溫度......................................................................................68 4.2 影響溶膠凝膠法的參數...................................................................79 4.2.1 鍍液濃度......................................................................................79 4.2.2 燒結溫度與時間..........................................................................81 4.3 不同結構奈米氧化鋅對VOCs 降解效率影響...............................90 4.3.1 濾網上製備氧化鋅.....................................................................90 4.3.2 反應物穩定濃度之測試.............................................................94 4.3.3 紫外光直接光解測試.................................................................95 4.3.4 濃度效應.....................................................................................96 4.3.5 流速效應...................................................................................101 4.4 不同結構奈米氧化鋅對E.coli 殺菌效率影響.............................103 第五章 結論與建議.............................................................................106 5.1 結論..................................................................................................106 5.2 建議..................................................................................................108 參考文獻...............................................................................................109 附錄.......................................................................................................114 | |
| dc.language.iso | zh-TW | |
| dc.subject | 丙酮 | zh_TW |
| dc.subject | 大腸桿菌 | zh_TW |
| dc.subject | 化學氣相沉積法 | zh_TW |
| dc.subject | 溶膠凝膠法 | zh_TW |
| dc.subject | 紫外光/氧化鋅 | zh_TW |
| dc.subject | sol-gel | en |
| dc.subject | E. coli | en |
| dc.subject | acetone | en |
| dc.subject | chemical vapor deposition | en |
| dc.subject | UV/ZnO | en |
| dc.title | 以奈米結構氧化鋅對濾材表面處理之研究 | zh_TW |
| dc.title | Study on Surface Treatment of Filter by Nano Structure of ZnO | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林文印,劉希平,李曜全,陳志傑 | |
| dc.subject.keyword | 化學氣相沉積法,溶膠凝膠法,紫外光/氧化鋅,丙酮,大腸桿菌, | zh_TW |
| dc.subject.keyword | chemical vapor deposition,sol-gel,UV/ZnO,acetone,E. coli, | en |
| dc.relation.page | 114 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
