請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46230完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳紀聖(Chi-Sheng Wu) | |
| dc.contributor.author | Pei-Yin Liou | en |
| dc.contributor.author | 劉珮吟 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:59:05Z | - |
| dc.date.available | 2012-07-29 | |
| dc.date.copyright | 2010-07-29 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-28 | |
| dc.identifier.citation | 1. Kudo A, Tanaka A, Domen K, Maruya K-i, Aika K-i, Onishi T, Photocatalytic decomposition of water over NiO---K4Nb6O17 catalyst, Journal of Catalysis, 111 (1988) 67-76.
2. Pan PW, Chen YW, Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation, Catalysis Communications, 8 (2007) 1546-49. 3. Hsiang-Chen Chen H-CC, Jeffrey C.S. Wu, Hsin-Yu Lin Sol-gel prepared InTaO4 and its photocatalytic characteristics, Journal of Materials Research, 23 (2008) 1364-70. 4. R. E. Marinangeli DFO, Photoassisted heterogeneous catalysis with optical fibers: I. Isolated single fiber, AIChE Journal 23 (1977) 415-26. 5. Du P, Carneiro JT, Moulijn JA, Mul G, A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis, Applied Catalysis A: General, 334 (2008) 119-28. 6. Lin H, Valsaraj KT, Development of an optical fiber monolith reactor for photocatalytic wastewaterTreatment, Journal of Applied Electrochemistry, 35 (2005) 699–708. 7. Wang W, Ku Y, The light transmission and distribution in an optical fiber coated with TiO2 particles, Chemosphere, 50 (2003) 999-1006. 8. Choi W, Ko JY, Park H, Jong Shik Chung, Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone, Applied Catalysis B: Environmental, 31 (2001) 209-20. 9. Phairat Usubharatana DM, Amornvadee Veawab, and Paitoon Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams, Industrial and Engineering Chemistry Research, 45 (2006) 2558-68. 10. Kudo A, Photocatalyst materials for water splitting, Catalysis Surveys from Asia, 7 (2003) 31-38. 11. Zou Z, Ye J, Arakawa H, Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties, Chemical Physics Letters, 332 (2000) 271-77. 12. Ye J, Zou Z, Arakawa H, Oshikiri M, Shimoda M, Matsushita A, Shishido T, Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+,Nb5+,Ta5+), Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 79-83. 13. Yoshiko Takahara JNK, Tsuyoshi Takata, Daling Lu, andKazunari Domen, Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition, Chemistry of Materials, 13 (2001) 1194-99. 14. Kato H AK, Kudo A., Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure, Journal of the American Chemical Society, 125 (2003) 3082-89. 15. Ken-ichi Shimizu SI, Tsuyoshi Hatamachi, Tatsuya Kodama, Mineo Sato, and Kenji Toda, Photocatalytic Water Splitting on Ni-Intercalated Ruddlesden−Popper Tantalate H2La2/3Ta2O7, Chemistry of Materials, 17 (2005) 5161–66. 16. Kazunari Domen AK, Takaharu Onishi, Photocatalytic Decomposition of Water into H2 and O2, over NiO-SrTiO3, Powder. 1.Structure of the Catalyst, Journal of Physical Chemistry, 90 (1986) 292-95. 17. Akihiko Kudo HK, and Seira Nakagawa, Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity, Journal of Physical Chemistry B, 104 (2000) 571-75. 18. Kato H, Kudo A, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts, Catalysis Today, 78 (2003) 561-69. 19. Ji-Jun Zou C-JL, , and Yue-Ping Zhang, Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment, Langmuir, 22 (2006) 2334-39. 20. Zou Z, Ye J, Sayama K, Arakawa H, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature, 414 (2001) 625-27. 21. Zou Z, Ye J, Sayama K, Arakawa H, Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 65-69. 22. 蔡金津, 奈米顆粒及薄膜之溶膠-凝膠技術, 化工資訊月刊, 第十五卷 (2001) 第16-21 頁. 23. NASA website,Available from: http://www.nasa.gov/ 24. 藍啟仁, 二氧化碳的利用與相關化學處理技術發展的現況, 台電工程月刊572 期, (1996) 第42-55 頁. 25. Getoff N, Scholes G, Weiss J, Reduction of carbon dioxide in aqueous solutions under the influence of radiation, Tetrahedron Letters, 1 (1960) 17-23. 26. B. Åkermark UE-W, P. Baeckström, R. Löf, Photochemical, metal-promoted reduction of carbon dioxide and formaldehyde in aqueous solution, Acta Chemica Scandinavica B:Organic Chemistry and Biochemistry, 34 (1980) 27-30. 27. Russell PG, Kovac N, Srinivasan S, Steinberg M, The Electrochemical Reduction of Carbon Dioxide, Formic Acid, and Formaldehyde, Journal of the Electrochemical Society, 124 (1977) 1329-38. 28. R. Hinogami YN, S. Yae, and Y. Nakato, An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles, Journal of Physical Chemistry B, 102 (1998) 974–80. 29. Kyle BG, Chemical and Process Thermodynamics, 3rd ed., Prentice-Hall, 1999. 30. J. M. Smith HCVN, M. M. Abbott, Introduction to chemical engineering thermodynamics, 7th, McGraw-Hill, 2005. 31. Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 126 (1999) 117-23. 32. Inoue T, Fujishima A, Konishi S, Honda K, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277 (1979) 637-38. 33. Adachi K, Ohta K, Mizuno T, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide, Solar Energy, 53 (1994) 187-90. 34. Kaneco S, Kurimoto H, Ohta K, Mizuno T, Saji A, Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium, Journal of Photochemistry and Photobiology A: Chemistry, 109 (1997) 59-63. 35. Mizuno T, Adachi K, Ohta K, Saji A, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions, Journal of Photochemistry and Photobiology A: Chemistry, 98 (1996) 87-90. 36. A. Henglein MG, C. Fisher, Berichte der Bunsen-Gesellschaft fur physikalische Chemie, 88 (1984) 1704. 37. Yoneyama H, Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution, Catalysis Today, 39 (1997) 169-75. 38. Tennakone K, Photoreduction of carbonic acid by mercury coated n-titanium dioxide, Solar Energy Materials, 10 235-38. 39. Subrahmanyam M, Kaneco S, Alonso-Vante N, A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity, Applied Catalysis B: Environmental, 23 (1999) 169-74. 40. Ichikawa S, Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis, Energy Conversion and Management, 36 613-16. 41. Xie TF, Wang DJ, Zhu LJ, Li TJ, Xu YJ, Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2, Materials Chemistry and Physics, 70 (2001) 103-06. 42. Sasirekha N, Basha SJS, Shanthi K, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide, Applied Catalysis B-Environmental, 62 (2006) 169-80. 43. Yuanyuan Liu BH, Ying Dai, Xiaoyang Zhang, Xiaoyan Qin, Minhua Jiang, Myung-Hwan Whangbo, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst, Catalysis Communications, 11 (2009) 210-13. 44. Liu B-J, Torimoto T, Yoneyama H, Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents, Journal of Photochemistry and Photobiology A: Chemistry, 113 (1998) 93-97. 45. Johne P, Kisch H, Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders, Journal of Photochemistry and Photobiology A: Chemistry, 111 (1997) 223-28. 46. Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S, Okada T, Kobayashi H, Effect of Surface Structures on Photocatalytic CO2 Reduction Using Quantized CdS Nanocrystallites1, The Journal of Physical Chemistry B, 101 (1997) 8270-78. 47. Kaneco S, Shimizu Y, Ohta K, Mizuno T, Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger, Journal of Photochemistry and Photobiology A: Chemistry, 115 (1998) 223-26. 48. Hemminger JC, Carr R, Somorjai GA, The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane, Chemical Physics Letters, 57 (1978) 100-04. 49. Thomas W. Woolerton SS, Erwin Reisner, Elizabeth Pierce, Stephen W. Ragsdale, and Fraser A. Armstrong, Efficient and Clean Photoreduction of CO2 to CO by Enzyme-Modified TiO2 Nanoparticles Using Visible Light, Journal of the American Chemical Society, 132 (2010) 2132–33. 50. Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M, Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt, The Journal of Physical Chemistry B, 101 (1997) 2632-36. 51. Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T, Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts, Catalysis Today, 44 (1998) 327-32. 52. Keita Ikeue HY, and Masakazu Anpo, Photocatalytic Reduction of CO2 with H2O on Ti-β Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties, Journal of Physical Chemistry B, 105 (2001) 8350-55. 53. Tseng IH, Chang W-C, Wu JCS, Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts, Applied Catalysis B: Environmental, 37 (2002) 37-48. 54. Guan GQ, Kida T, Yoshida A, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst, Applied Catalysis B-Environmental, 41 (2003) 387-96. 55. Ku Y, Lee W-H, Wang W-Y, Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process, Journal of Molecular Catalysis A: Chemical, 212 (2004) 191-96. 56. Akira Nishimura NK, Go Mitsui, Masafumi Hirota, Eric Hu, CO2 reforming into fuel using TiO2 photocatalyst and gas separation membrane, Catalysis Today, 148 (2009) 341-49. 57. Ichikawa S, Doi R, Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis, Catalysis Today, 27 (1996) 271-77. 58. Gokon N, Hasegawa N, Kaneko H, Aoki H, Tamaura Y, Kitamura M, Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry, Solar Energy Materials and Solar Cells, 80 (2003) 335-41. 59. Jingjing Xua YA, Degang Fu, Jian lin, Yihua Lin, Xunwei Shen, Chunwei Yuan, Zhidong Yin, Photocatalytic activity on TiO2-coated side-glowing optical fiber reactor under solar light, Journal of Photochemistry and Photobiology A: Chemistry, 199 (2008) 165-69. 60. Atsun Technologies company,Available from: http://www.atsun.com.tw/fiber.htm 61. Russel P. Richmond WRM, Gerald L Vaneman, Danan Dou, Evaluation of High Cell Density Substrates for Advanced Catalytic Converter Emissions Control, in proceeding of International fuels & Lubricants meeting & exposition Toronto, 1999, Paper No. 1999-01-3630. 62. Williams JL, Monolith structures, materials, properties and uses, Catalysis Today, 69 (2001) 3-9. 63. Ronald M. Heck SG, Robert J. Farrauto, The application of monoliths for gas phase catalytic reactions, Chemical Engineering Journal, 82 (2001) 149-56. 64. C.T. Berglin WH, US patent 4 552 748 (1985) 65. D. Schanke EB, A. Holmen, US patent 6 211 255 (2001) 66. I. Nicolau PMC, L.R. Johnson, US patent 5 705 679 (1998) 67. Lachman IM, Williams JL, Extruded monolithic catalyst supports, Catalysis Today, 14 (1992) 317-29. 68. Michael L SaDFO, Acetone oxidation in a photocatalytic monolith reactor, Journal of Catalysis, 149 (1994) 81-91. 69. Hossain MM, Raupp GB, Hay SO, Obee TN, Three-dimensional developing flow model for photocatalytic monolith reactors, AIChE Journal, 45 (1999) 1309-21. 70. Raupp GB, Hossain AAMM, Changrani R, First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air, Catalysis Today, 69 (2001) 41-49. 71. Dingwang Chen FL, Ajay K. Ray, Effect of mass transfer and catalyst layer thickness on photocatalytic reaction, AIChE Journal, 46 (2000) 1034-45. 72. Aguado MA, Anderson MA, Hill Jr CG, Influence of light intensity and membrane properties on the photocatalytic degradation of formic acid over TiO2 ceramic membranes, Journal of Molecular Catalysis, 89 (1994) 165-78. 73. Chen J, Yang H, Wanga N, Ring Z, Dabros T, Mathematical modeling of monolith catalysts and reactors for gas phase reactions, Applied Catalysis A: General, 345 (2008) 1-11. 74. Lin HF, Valsaraj KT, An optical fiber monolith reactor for photocatalytic wastewater treatment, Aiche Journal, 52 (2006) 2271-80. 75. Machado RM, Broekhuis RR, Andrew F. Nordquist, Roy BP, Carney SR, Applying monolith reactors for hydrogenations in the production of specialty chemicals—process and economic considerations, Catalysis Today, 105 (2005) 305–17. 76. Herrmann J-M, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today, 53 (1999) 115-29. 77. Zhen-Yi Wang H-CC, Jeffrey C.S. Wu, Din Ping Tsai, Guido Mul, CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy, Applied Catalysis A: General, 380 (2010) 172-77. 78. Steven J. Limmer SS, Yun Wu, Tammy P. Chou, Carolyn Nguyen, and Guozhong Cao, Template-Based Growth of Various Oxide Nanorods by Sol-Gel Electrophoresis, Advanced Functional Materials, 12 (2002) 1. 79. Materials science and engineering : an introduction, in Jr. WDC (editor), Materials science and engineering : an introduction, 3 ed, Wiley, New York, 1994, w-1. 80. Swarthmore, Powder Diffraction File Card No.25-0391, 1997 81. Swarthmore, Powder Diffraction File Card No.06-0416, 1997 82. Swarthmore, Powder Diffraction File Card No.25-0922, 1997 83. Swarthmore, Powder Diffraction File Card No.88-2326, 1997 84. Swarthmore, Powder Diffraction File Card No. 78-0643, 1997 85. The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source, in Haapala H (editor), The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source, Environmental Pollution, 1998, 99, 361-63 86. D. B. Williams CBC, Transmission Electron Microscopy, Springer, New York and London, 1996. 87. Electron Spectroscopy for Chemical Analysis, in B. D. Ratner DGC (editor), Electron Spectroscopy for Chemical Analysis, John Wiley & Sons, Inc., New York, 1997, Chapter 3, 43-98 88. D’Souzae JI, Mercury Intrusion Porosimetry : A Tool for Pharmaceutical Particle Characterization, 2008. 89. Wikipedia web - Atmospheric pressure chemical ionization,Available from: http://en.wikipedia.org/wiki/Atmospheric_pressure_chemical_ionization 90. Wikipedia web - Atomic absorption spectroscopy,Available from: http://en.wikipedia.org/wiki/Atomic_absorption_spectroscopy 91. Charles D. Wagner AVN, Anna Kraut-Vass, Juanita W. Allison, Cedric J. Powell, and John R. Rumble, Jr., NIST X-ray Photoelectron Spectroscopy Database 2007 92. Handbook of x-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data, in J. F. Moulder JC, R. C. King, (editor), Handbook of x-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics, Eden Prairie, Minn., 1995, 93. Jinhua Ye ZZ, Visible light sensitive photocatalysts In1-xMxTaO4 (M=3d transition-metal) and their activity controlling factors, Journal of Physics and Chemistry of Solids, 66 (2005) 266–73. 94. Wu JCS, Wu TH, Chu TC, Huang HJ, Tsai DP, Application of optical-fiber photoreactor for CO2 photocatalytic reduction, Topics in Catalysis, 47 (2008) 131-36. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46230 | - |
| dc.description.abstract | 將二氧化碳與水在光照射之下,經由光觸媒催化為有價值的有機化合物,稱之為「人工光合作用」,有助於解決全球暖化與能源危機。本研究以溶凝膠法製備SiO2與NiO/InTaO4,將SiO2與NiO/InTaO4依序覆膜於蜂巢狀陶瓷載體上,形成多層結構,SiO2層有助於避免觸媒掉進載體孔洞中造成觸媒浪費,觸媒經過1100 oC鍛燒形成銦鉭晶相。蜂巢式反應器中,於載體的每一個通道內置入PMMA側面發光光纖,光可經由光線傳送並照射到觸媒表面,在光纖的側面鑿洞以增加側面發光強度,並於光纖尾端加金屬鍍膜以增加光反射,同時進行氣相光催化還原二氧化碳,以GC/FID層析儀分析主要產物為甲醇與乙醛。由UV-Vis圖譜得知銦鉭觸媒可吸收至可見光波段,能隙為2.7 eV,添加NiO共觸媒後能隙下降為2.2 eV,並經由XRD圖確認無雜相形成,SEM圖可見觸媒均勻附著於載體表面,並可觀察到NiO形成於InTaO4表面;利用光纖設計增加側面發光比率,比較不同光纖的甲醇產率,經過側面鑿洞與Pt尾端沉積的光纖,室溫下使用42.46 mW/cm2的可見光照射下,甲醇最佳產率為0.16 µmole/g•hr,當光源轉換為AM1.5 G模擬太陽光時,產物轉移為乙醛,以不同鎳含量與不同溫度下的活性比較,在反應溫度為70 oC時2.6%NiO/InTaO4獲得最佳產率為0.3 µmole/g•hr。 | zh_TW |
| dc.description.abstract | Global warming and fuel shortage are undeniable enviromental and energy problems nowadays. To solve these two problems, CO2 and water can be converted into organic compounds via photocatalysts under light irradiation, which is also called artificial photosynthesis. In the research, sol-gel prepared SiO2 and NiO/InTaO4 were coated sequentially on monolith to form multilayer structure. The catalyst was calcined to form crystal at 1100 oC. PMMA fibers with caves which can increase the side emission of light were put inside each channel of monolith. Furthermore, the end of the fibers was deposited a mirror to increase the light refletance from the end. The UV−VIS spectra of powder InTaO4 as well as NiO loaded InTaO4 indicated that both photocatalysts could absorb visible light. Pure InTaO4 was observed from XRD pattern. From SEM images, uniform catalyst layer and NiO were formed on monolith surface. The methanol yield achieved 0.16 µmol/g•h with visible light intensity of 42.46 mW/cm2 at 25°C. The product shifted to acetaldehyde under AM1.5G sunlight irradiation which yield obtained was 0.3 µmol/g•h at 70 °C on 2.6%NiO/InTaO4. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:59:05Z (GMT). No. of bitstreams: 1 ntu-99-R97524037-1.pdf: 13075092 bytes, checksum: ce205f6c23a94ae8c16d5ebd9c7f5825 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 表目錄 XIV 第一章 緒論 1 第二章 文獻回顧 3 2-1 光觸媒反應原理 3 2-2 銦鉭觸媒簡介 4 2-2-1 銦鉭觸媒結構與性質 4 2-2-2 添加NiO共觸媒改質 7 2-3 觸媒製備─溶凝膠法 15 2-4 二氧化碳的簡介 19 2-5 二氧化碳的減量 19 2-5-1 二氧化碳固定 19 2-5-2 二氧化碳的光催化還原 21 2-5-2-1 溫度效應 29 2-6 光纖簡介 30 2-7蜂巢狀反應器 35 2-7-1蜂巢狀載體(Monolithic support)簡介 35 2-7-2 蜂巢狀陶瓷反應器(Honeycomb monolith reactor) 36 第三章 實驗方法 44 3-1 實驗藥品與器材 44 3-1-1 藥品 44 3-1-2 器材 45 3-2 實驗步驟 46 3-2-1 負載不同金屬InTaO4觸媒粉體製備 46 3-2-2 SiO2覆膜液製備 46 3-2-3 觸媒覆膜液製備 47 3-2-3-1 NiO/InTaO4(sg) 47 3-2-3-2 NiO/InTaO4(imp) 47 3-2-4 浸漬覆膜法(Dip-coating method) 47 3-3 觸媒特性分析原理與方法 53 3-3-1 儀器型號與規格 53 3-3-2 紫外光-可見光光譜儀(UV-VIS) 54 3-3-3 X光繞射儀(XRD) 56 3-3-4 掃描式電子顯微鏡(SEM) 60 3-3-5 能量散佈光譜儀(EDS) 61 3-3-6 穿透式電子顯微鏡(TEM) 61 3-3-7 X光光電子能譜儀(XPS) 62 3-3-8 比表面積分析(BET) 63 3-3-9 汞壓法(MIP) 64 3-3-10大氣壓力化學游離/質譜儀 (APCI/MS) 66 3-3-11 原子吸收光譜( AAS) 67 3-3-12 氣相管柱層析儀(GC) 68 3-3-13 X光吸收光譜(XAS) 68 3-4 光催化活性檢測 71 3-4-1 液相反應器 71 3-4-2 內照明蜂巢式反應器 72 3-4-3 太陽光譜介紹 75 3-4-4 二氧化碳光催化還原 78 3-4-5 訊華軟體—SISC色層分析數據處理系統 83 第四章 觸媒特性分析結果與討論 85 4-1 觸媒製備 85 4-1-1 SiO2覆膜液 85 4-1-2 InTaO4覆膜液 86 4-1-3 Atomic Absorption 86 4-2 觸媒檢測與特性分析 89 4-2-1 UV-VIS 89 4-2-2 XRD 91 4-2-3 XPS 92 4-2-4 BET 97 4-2-5 TEM 97 4-2-6 SEM 100 4-2-7 EDS 105 4-2-8 MIP 106 4-2-9 XAS 107 第五章 光催化還原結果與討論 110 5-1 液相反應器 110 5-2 內照明蜂巢式反應器 111 5-2-1 空白實驗 111 5-2-2 光纖效應 112 5-2-3 APCI/MS 114 5-2-4 覆膜條件效應 115 5-2-5 鎳含量適化 116 5-2-6 溫度效應 118 5-2-7 失活測試 120 5-2-8 產率和量子效率比較 121 第六章 結論 124 參考文獻 125 附錄 131 個人小傳 145 | |
| dc.language.iso | zh-TW | |
| dc.subject | 銦鉭光觸媒 | zh_TW |
| dc.subject | 蜂巢狀反應器 | zh_TW |
| dc.subject | InTaO4 photocatalyst | en |
| dc.subject | Monolith reactor | en |
| dc.title | 以內照明蜂巢式反應器進行CO2光催化還原 | zh_TW |
| dc.title | CO2 photoreduction using internally illuminated monolith reactor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 萬本儒(Ben-Zu Wan),白曛綾(Hsun-Ling Bai) | |
| dc.subject.keyword | 蜂巢狀反應器,銦鉭光觸媒, | zh_TW |
| dc.subject.keyword | Monolith reactor,InTaO4 photocatalyst, | en |
| dc.relation.page | 145 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 12.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
