Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46187
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃武良(Wuu-Liang Huang)
dc.contributor.authorPo-Chun Chenen
dc.contributor.author陳柏淳zh_TW
dc.date.accessioned2021-06-15T04:57:12Z-
dc.date.available2011-08-18
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-07-28
dc.identifier.citation吳強、李成林、江傳力(2005)瓦斯水合物生成控制因素探討。煤炭學報,第30卷第3期,第283頁-287頁。
孫志高、馬榮生、郭開華、樊栓獅、王如竹(2003)表面活性劑對甲烷水合物儲氣特性影響的實驗研究,西安交通大學學報,第37卷,第7期,第723-726頁。
海域天然氣水合物調查研究(2006)95年度台日技術合作計畫專家來華指導成效報告書,共26頁。
陳汝勤(2006)天然氣水合物的地質研究。科學發展第412期,第14頁-17頁。
陳柏淳(2006)天然氣水合物的合成模擬。科學發展第412期,第32頁-37頁。
陳柏淳(2006)以冰晶合成天然氣水合物之技術。經濟部中央地質調查所出國報告,共12頁。
業渝光(2003)地質測年與天然氣水合物實驗技術研究及應用,第206-244頁。海洋出版社。
經濟部中央地質調查所(2009)台灣西南海域新興能源-天然氣水合物資源調查與評估:熱力學研究(2/4)報告書。執行單位:國立臺灣大學化學工程學系,共200頁。
經濟部中央地質調查所(2009)台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查(2/4)報告書(天然氣水合物賦存區之地熱調查)。執行單位:國立臺灣大學,共48頁。
鐘三雄(2005)國際天然氣水合物的調查研究與應用,經濟部中央地質調查所94年度研究發展報告,共129頁。
鐘三雄(2006)天然氣水合物探勘技術。科學發展第412期,第26頁-31頁。
鐘三雄(2007)我國天然氣水合物未來研發策略之研究,經濟部中央地質調查所96 年度研究發展報告第94-008號,共149頁。
鐘三雄(2009)天然氣水合物應用科技研發趨勢之研究,經濟部中央地質調查所98 年度研究發展報告第98-14號,共72頁。
樊栓獅(2005)天然氣水合物儲存與運輸技術。可再生能源叢書。化學工業出版社,共227頁。
Anderson, R.; Llamedo, M.; Tohidi, B.; Burgass, R.W. Experimental measurement of methane and carbon dioxide clathrate equilibria in mesoporous silica. Physical Chemistry B. 2003, 107, 3507-3514.
Anonymous. Worldwide look at reserves and production. Oil & Gas Journal. 2007, 105, 48, 24-25.
Afzal, W.; Mohammadi, A.H.; Richon, D. Experimental measurements and predictions of dissociation conditions for methane, ethane, propane, and carbon dioxide simple hydrates in the presence of diethelene glyco aqueous solutions. Chemical and Engineering Data. 2008, 53(3), 663-666.
Bishnoi, P.R.; Dholabhai, P.D. Equilibrium conditions for hydrate formation for a ternary mixture of methane, propane and carbon dioxide, and a natural gas mixture in the presence of electrolytes and methanol. Elsevier Science Bv, AMSTERDAM. 1999, 821-827..
Boswell, R. Resource potential of methane hydrate coming into focus. Petroleum Science and Engineering. 2007, 56, 9-13.
Bourry, C.; Chazallon, B.; Charlou, J.L. Free gas and gas hydrates from the Sea of Marmara, Turkey Chemical and structural characterization. Chemical Geology. 2009, 264, 197-206.
Chatti, I.; Delahaye, A.; Fournaison L.; Petitet, J.P. Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Conversion and Management. 2005, 46, 1333–1343.
Chen, D.F.; Cathles III, L.M.; Roberts, H.H. The geochemical signatures of variable gas venting at gas hydrate sites. Marine and Petroleum Geology. 2004, 21, 317-326.
Circone, S.; Kirby, S.; Stern, L.A. Measurement of gas yields and flow rates using a custom flowmeter. Review of Scientific Instruments. 2001, 72(6), 2709-2716.
Circone, S.; Stern, L.A.; Kirby, S.H. The effect of elevated methane pressure on methane hydrate dissociation. American Mineralogist. 2004, 89, no. 8-9; 1192-1201.
Circone, S.; Kirby, S.; Stern, L.A. Thermal regulation of methane hydrate dissociation: Implications for gas production models. Energy & Fuels. 2005a, 19, 2357-2363.
Circone, S.; Kirby, S.H; Stern, L.A. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary. Physical Chemistry B. 2005b, 109, 9468-9475.
Circone, S.; Kirby, S.H; Stern, L.A. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria. Physical Chemistry B. 2006, 110, 8232-8239.
Collet, T.S. Gas hydrates as a future energy resource. Geotimes. 2004, 49(11), 24–27.
Cranganu, C. In-situ thermal stimulation of gas hydrates. Petroleum Science and Engineering. 2009, 65, 76- 80.
Dary, H. On some of the combinations of oxy-muriatic gas and oxygen, and on the chemical relations of the principles to inflammable bodies: Royal Soc. London Philos. Trans.1811, 101, 1.
Dash, J.G.; Fu, H.; Wettlauger, J.S. The premelting of ice and its environmental consequences. Reports on Progress Physics. 1995, 58, 115-167.
Davidson, D.W.; Gough, S.R.; Ripmeester, J.A. The effect of methanol on the stability of clathrate hydrates. Canadian Journal of Chemistry. 1981, 59, 2587-2590.
Durham, W.B.; Heard, H.C.; Kirby, S.H. Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: preliminary result. Geophysical Research. 1983, 88, 377-392.
Durham, W.B.; Kirby, S.H.; Stern, L.A. The strength and rheology of methane clathrate hydrate. Geophysical Research. 2003, 108, B4, 2182, doi:10.1029/2002JB001872.
Eaton, M.; Mahajan, D.; Flood, R. A novel high-pressure apparatus to study hydrate-sediment interactions. Petroleum Science and Engineering. 2007, 56, 101-107.
Ganji, H.; Manteghian, M.; Sadaghianizadeh, K.; Omidkhah, M.R.; Mofrad, H.R. Effect of different surfactants on methane hydrate formation rate, stability and storage capacity. Fuel. 2007, 86, 434-441.
Giavarini, C.; Maccioni, F.; Santarelli, M.L. Dissociation rate of THF-methane Hydrates. Petroleum Science and Technology. 2008, 26, 2147-2158.
Gnanendran, N.; Amin, R. Equilibrium hydrate formation conditions for hydrotrope-water-natural gas systems. Fluid Phase Equilibria. 2004, 221(1-2), 11-20.
Gudmundsson, J.S.; Parlaktuna, M.; Khokhar, A.A. Storing natural-gas as frozen hydrate. SPE Production & Facilities. 1994, 9(1), 69-73.
Gudmundsson, J.S. Gas storage and transport using hydrates. Offshore Mediterranean Conference, Ravenna. 1997.
Gudmundsson, J.S.; Graff, O.F. Hydrate non-pipeline technology for transport of natural gas. 22nd World Gas Conference, Tokyo, June 1-5, 2003.
Gupta, A.; Lachance, J.; Sloan, E.D.; Koh, C.A. Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry. Chemical Engineering Science. 2008, 63, 5848-5853.
Hao, W.F.; Sheng, W.; Fan, S.S.; Wang, J.Q. Experimental Investigation of methane hydrate formation in a spraying reactor. Wuhan University of Technology. 2007, 29, 39-43.
Hailu, K.A.; Thor, M.S. Effect of ultralow concentration of methanol on methane hydrate formation. Energy&Fuels. DOI:10.1021/ef9009422.
Hester, K.C.; Dunk, R.M.; White, S.N.; Brewer, P.G.; Peltzer, E.T.; Sloan, E.D. Gas hydrate measurements at Hydrate Ridge using Raman spectroscopy. Geochimica et Cosmochimica Acta. 2007, 71, 2947-2959.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A. Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. Geophysical Research. 2009, 114, B02212, doi:10.1029/2008JB006132.
Hwang, M.J.; Wright, D.A.; Kapur, A.; Holder, G.D. An experimental study of crystallization and crystal growth of methane hydrates from melting ice. Inclusion Phenomena and Molecular Recognition in Chemistry. 1990, 8, 103-116.
Ivanhoe, L.F.; Leckie, G.G. Global oil, gas fields, sizes tallied, analyzed. Oil & Gas Journal. 1993, 91, 7, 87-91.
Javanmardi, J.; Nasrifar, Kh.; Najibi, S.H., Moshfeghian, M. Economic evaluation of natural gas hydrate as an alternative for natural gas transportation. Applied Thermal Engineering. 2005, 25, 1708-1723.
Jeffrey, A. P.; Angus, I. B. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. Geophysical Research. 2005, 110, B04102, doi:10.1029/2004JB003259.
Jhaveri, J.; Robinson, D.B. Hydrates in the methane-nitrogen system. Chemical Engineering, 1965, April, 75–78.
Kalogerakis, N.; Jamaluddin, A.K.M.; Bishnoi, P.R. Effect of surfactants on hydrate formation kinetics. SPE International Symposium on Oilfield Chemistry, 2-5 March 1993. New Orleans, Louisana.
Katz, D.; Cornell, D.; Kobayashi, R.; Poetmann, F.H.; Vary, J.A.; Elenblass, J.R.; Weinaug, C.F. Handbook of Natural Gas Engineering. 1959, McGraw-Hill, New York.
Khokhar, A.A.; Gudmundsson, J.S.; Sloan, E.D. Gas storage in structure H hydrates. Fluid Phase Equilibria. 1998, 150-151, 383-392.
Kneafsey, T. J.; Gupta, A.; Seol, Y.; Tomutsa, L. Permeability of laboratory-formed methane hydrate-bearing sand, OTC-19536-PP, SPE Offshore Technology. 2008, Conference, Houston, TX, May
Kono, H.O.; Narasimhan, S.; Song, F.; Smith, D.H. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing. Powder Technology. 2002, 122, 239-246.
Kuji, Y.; Yamasaki, A.; Yanagisawa, Y. Effect of cyclodextrins on hydrate formation rates. Energy and Fuels. 2006, 20, 2198-2201.
Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochemistry geophysics geosystems. 2007, 8, Q06003, 10PP, doi:10.1029/2006GC001531.
Link, D.D.; Ladner, E.P.; Elsen, H. A.; Taylor, C.E. Formation and dissociation studies for optimizing uptake of methane by methane hydrate. Fluid Phase Equilibria. 2003, 211, 1-10.
Makogon, Y.F. Hydrates of natural Gas. Pennwell, Tulsa, Oklahoma. 1981, p. 237
Marshall, D.R.; Saito, S.; Kobayashi, R. Hydrates at high pressures: Part I. Methane-water, argon-water, and nitrogen-water systems. American Institute of Chemical Engineers. 1964, 10, 202-205.
Melnikov, V.P.; Nesterov, A.N.; Reshetnikov, A.M.; Zavodovsky, A.G. Evidence of liquid water formation during methane hydrates dissociation below the ice point. Chemical Engineering Science. 2009, 64, 1160-1166.
McLeod, H.O.; J.M. Campbell. Natural gas hydrates at pressures to 10,000 psia. Petroleum Technology. 1961, 222, 590–594.
Mohammadi, A.H.; Richon, D. Experimental gas hydrate dissociation data for methane, ethane, and propane + 2-propanol aqueous solutions and ethmane +1-popanol aqueous solution systems. Chemical and Engineering Data. 2007, 52, 2509-2510.
Mohammadi, A.H.; Afzal, W.; Richon, D. Experimental data and predictions of dissociation conditions for ethane and propane simple hydrates in the presence of methanol, ethylene glycol, and triethylene glycol aqueous solutions. Chemical and Engineering Data. 2008, 53(3), 683-686.
Mohammadi, A.H.; Kraouti, I. Richon, D. Experimental data and predictions of dissociation conditions for methane, ethane, propane, and carbon dioxide simple hydrates in the presence of glycol aqueous solutions. Industrial and Engineering Chemistry Research. 2008, 47(21), 8492-8495.
Ng, H.J.; Robinson, D.B. Hydrate formation in systems containing methane, ethane, propane, carbon-dioxide or hydrogen-sulfide in the presence of methanol. Fluid Phase Equilibria. 1985, 275(2), 127-131.
Pang, W.X.; Xu, W.Y.; Sun, C.Y.; Zhang, C.L.; Chen G.J. Methane hydrate dissociation experiment in a middle-sized quiescent reactor using thermal method. Fuel. 2009, 88, 497-503.
Rehder, G.; Kirby, S.H.; Durham, W.B.; Stern, L.A.; Peltzer, E.T.; Pinkston, J.; Brewer, P.G. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth. Geochimica et Cosmochimica Acta. 2004, 68 (2), 285–292.
Santamarina, J.C.; Ruppel, C. The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Cabada, July 6-10, 2008.
Seo, Y.T.; Kang, S.P.; Lee, H. Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide, 1,4-dioxane and acetone. Fluid Phase Equilibria. 2001, 189, 99-110.
Sloan, E.D. Clathrate Hydrates of Natural Gases, 2nd edition. Marcel Dekker Inc., Publishers, New York. New York. 1998, 705 pp.
Sloan, E.D. Fundamental principles and applications of natural gas hydrates. Nature. 2003, 426, 353-359.
Sloan, E.D.; Koh, C. Clathrate hydrates of natural gases. CRC Press, New York, 2008 , Third Ed. 721 pp.
Staykova, D.K.; Kuhs, W.R.; Salamatin, A.N.; Hansen, T. Formation of porous gas hydrates from ice powder: diffraction experiments and multistage model. Physical Chemistry B. 2003, 107, 10299-10311.
Stern, L. A.; Kirby, S.H.; Durham, W.B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible super heating of water ice. Science. 1996, 273, 1843–1848.
Stern, L.A.; Kirby, S.H. Polycrystalline methane hydrate: synthesis from superheated ice, and low-temperature mechanical properties. Energy & Fuels. 1998, 12 (2), 201–211.
Stern, L. A. Laboratory synthesis of pure methane hydrate suitable for measurement of physical properties and decomposition behavior, in Natural Gas Hydrate in Oceanic and Permafrost Environments, edited by M. D. Max. 2000, pp. 323– 348, Kluwer Academic Publishers, Netherlands.
Stern, L.A.; Circone, S., Kirby, S.H. Anomalous preservation of pure methane hydrate at 1 atm. Physical Chemistry B. 2001, 105, 1756–1762.
Stern, L.A.; Kirby, S.H.; Circone, S.; Durham, W.B. Scanning electron microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates. American Mineralogist. 2004, 89, 1162-1175. Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, BC, Canada. 2008, July 6-10.
Takahashi, M.; Moriya, H.; Katoh, Y.; Iwasaki, T. Development of natural gas hydrate (NGH) pellet production system by bench scale unit for transportation and storage of NGH pellet.
Verma, V.K. Gas hydrates from liquid hydrocarbon-water systems. 1974, Ph. D. Dissertation, Univ. of Michigan, Ann Arbor.
Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand. Geophysical research letters. 2002, 29, 22-29.
Waite, W.F.; Stern, L.A.; Kirby, S.H; Winters, W.J.; Mason, D.H. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophysical Journal International. 2007, 169, 767-774.
Waite, W. F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization. Geophysical Research. 2008, 113, B07102, doi:10.1029/2007JB005351.
Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason D.H. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. Journal of American Mineralogist. 2004, 89, 2121-1227.
Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.; Pecher; I.A. Methane gas hydrate effect on sediment acoustic and strength properties. Petroleum Science and Engineering. 2007, 56, 127-135.
Winters, W.J.; Lorenson, T.D.; Paull, C.K.; Balut, Y. Coring and gas hydrate-related operations during the IMAGES VIII/PAGE 127 gas hydrate and paleoclimate cruise on the RV Marion Dufresne in the gulf of Mexico, 2–18 July 2002. Initial report of the IMAGES VIII/PAGE 127 gas hydrate and paleoclimate cruise on the RV Marion Dufresne in the Gulf of Mexico, 2–18 July 2002. 2007, U.S. Geological Survey Open-File Report, 2004–1358.
Xie, Y.M.; Guo, K.; Liang, D.; Fan, S.; Gu, J. Steady gas hydrate growth along vertical heat transfer tube without stirring. Chemical Engineering Science. 2005, 60, 777-786.
Yamamoto, S.; Alcauskas, J.B.; Crozier, T.E. Solubility of methane in distilled water and seawater. Chemical and Engineering Data.1976, 21(1), 78-80.
Yamamoto, K.; Dallimore, S. Aurora-JOGMEC-NRCanan Mallik 2006-2008 gas hydrate research project progress. Fire in the Ice. 2008, summer, 1-5.
Zhang, J.S.; Lee, S.Y.; Lee, J.W. Kinetics of methane hydrate formation from SDS solution. Industrial & Engineering Chemistry Research. 2007, 46, 6353-6359.
Zhong, Y. and Rogers, R.E. Surfactant effects on gas hydrate formation. Chemical Engineering Science. 2000, 55, 4175-4187.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46187-
dc.description.abstract本研究成功地架設了國內第一套可記錄系統溫壓變化歷程的氣體水合物合成及處理儲存設備。以固態冰晶顆粒與高壓甲烷氣體為材料,在不擾動冰晶標本裝填時所設計的外型及其內部組構條件下,合成出大型塊狀(100公克以上)的飽和甲烷水合物(甲烷飽和度達99%以上)。另外也可搭配混合不同種類的沉積物,製作出產狀與結構各異的水合物標本,適合後續的研究所需。
以「冰晶法」製作飽和的多晶質甲烷水合物標本,其流程主要可以分為「加壓」以及「加熱」兩個階段。本研究首先探討第一個加壓階段,即當系統內僅導入高壓甲烷氣體,而尚未進入第二個階段前(藉由外部加熱以強迫所有的冰晶皆轉換成飽和的甲烷水合物),不同的實驗條件組合(系統設定之初始溫度、壓力及冰晶標本裝填組構)會對冰晶轉換速率與總生產量具有何種影響。
本研究首度證實,僅在瞬間將高壓甲烷氣體導入反應釜內,而標本保持於靜態的條件下,不必進行第2階段的外部加熱,在孔隙率66%的冰晶標本中,最高便有12%的冰晶轉換成甲烷水合物。且在此階段的甲烷水合物生成量與系統設定的初始溫度呈反比,設定的溫度愈低,水合物生成量反而愈多。另在緩慢加壓與標本混雜石英砂等不同的實驗中,會得到更快的水合物生成速率與最高達25%的甲烷水合物生成量。研究也發現,當在僅加入高壓甲烷氣體的第1階段中能有較多的水合物生成,則後續僅須經由較低的加溫溫度與較短的加溫時程,便可以完成幾近飽和的甲烷水合物標本製作,節省大量製備飽和甲烷水合物標本所需的時間,也可降低能源消耗。
經由對影響生成效率的參數探討及電子顯微鏡觀察,本研究所提出的「冰晶法」合成原理及其模式能夠合理地解釋為何所合成的甲烷水合物具有不同的膠結度,以及即使經過第二階段的加溫流程,標本卻不致因固態冰晶融解產生變形或重心改變。而一旦瞭解並掌握住各實驗參數對合成模式的影響效應後,只要適當地設計製作流程與調整溫壓與孔隙率等變化,便可合成出具有不同組構特性的甲烷水合物標本,適合後續不同的實驗工作需求。
過去雖有不少針對減緩或促進液態水中天然氣水合物生成速率而進行的添加劑研究,但卻尚未有關於如何增進在固態冰晶中合成氣體水合物效率的報導。本研究發現若在系統中添加少量的揮發性醇類氣體(甲醇、乙醇與正丙醇),則可大幅地增進甲烷及二氧化碳水合物形成的總生產量。其中在接近冰點的高溫環境下,以氣態乙醇催化效率最佳,最高有接近91% 的冰晶在不需加熱的靜態情況下便能轉換成水合物,大幅增進製備甲烷水合物及二氧化碳水合物的效益。此項發現在未來天然氣的輸運與儲存上應有相當的應用價值。
本研究初步認為微量氣態醇類的存在之所以能增加水合物的生成總量,應該是因為其能防止完整包覆冰晶外層的水合物薄膜在反應初期快速成形,且一併改變所生成的水合物外形,讓後續高壓氣體仍得以通過已生成的水合物膜,持續與內層冰晶的水分子接觸作用。也因此由總體觀之,雖然醇類為廣泛使用作為防止天然氣水合物成形的抑制劑,但是加入微量醇類反而有增進總生成量的效果。醇類的催化程度與系統設定初始溫度的關係,可能與其蒸氣壓的相關,且催化效果最佳的蒸氣壓約在10mmHg。
zh_TW
dc.description.abstractThis study has successfully set up Taiwan’s first gas hydrate synthesizing apparatus which has the capability for recording experimental temperature and pressure. A large (at least 100 grams) methane-saturated (more than 99%) solid hydrate sample can be produced by simply introducing highly pressurized methane gas into the reactor that contains an ice-seed sample (Otherwise called an Ice Seed Method experiment). The appearance and texture of manufactured hydrates remain the same as those of the original ice-seed samples. Also, by this system, we can prepare a variety of samples mixed with different sediments for meeting the needs of follow-up studies.
The process of the “Ice Seed Method” can be divided into two main stages, 'Pressurization' and 'Heating'. Firstly, we investigated the influence of different experimental parameters (Initial temperature, pressure, and fabric of ice-seed sample, etc.) on ice-to-hydrate converting rates and total hydrate yields during the pressurization stage. This study has shown for the first time that before the second heating stage, a certain amount of gas hydrate (For example, 12% of ice can be converted to hydrate within 47 min from an ice-seed sample with a porosity of 66%) can be produced after introducing highly pressurized methane gas into the reactor while the texture of sample remains constant. We found that the amount of methane hydrates produced is inversely proportional to the initial temperature; the lower the temperature, the larger the amount of formed hydrate. The converting rates can be even faster in experiments with a slow pressurization procedure or samples mixed with sediments. A 25% conversion can be achieved in a slowly pressurized run within 1042 min.
We also found that if there are more hydrates formed during the pressurization stage, the cost of energy and time can be cut down dramatically during the succeeding heating stage for the purpose of making a completely saturated methane hydrate sample.
By analyzing experimental data along with some SEM work, this study proposed a simple schematic model to reasonably explain some unique characteristics of the “Ice Seed Method”, such as why hydrate samples can be manufactured with different degrees of cementation, or why the appearance and texture of samples can be maintained after the heating stage. By adjusting some experimental parameters properly, hydrate samples with different features can be manufactured by the guideline obtained from this study.
Although there were some previous researches concentrated on how to promote or retard the formation of gas hydrates in a liquid system by adding different additives, no report about how to improve the conversion efficiency of the “Ice Seed Method” can be found. This study found out that the total amount of methane or carbon dioxide hydrates formed during the “Pressurization” stage can substantially increase as some alcohol vapor (methanol, ethanol and 1-propanol) is added into the system. The one that has the best promoting effect is ethanol while the initial system temperature is set at 270.2K. Nearly 91% of ice seed can be converted into methane hydrates during pressurization stage. The discovery may have considerable practical value for the transportation and storage of natural gas.
The preliminary hypothesis for this promoting effect is that the presence of these trace gaseous alcohol is able to slow down the formation rate of hydrates and prevent the generation of impervious hydrate film covering the ice core in the early stage. Instead, the formed hydrates are permeable because of a different texture so the inner ice can keep converting into hydrates by continuously interacting with methane molecules. Maybe the catalytic efficiency has a relationship with the alcohol vapor pressure which changes with the temperature. According to our experimental data, the best catalytic efficiency for each kind of alcohol may be achieved at different temperatures when the vapor pressures are all around 10mmHg.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:57:12Z (GMT). No. of bitstreams: 1
ntu-99-D94224001-1.pdf: 7005754 bytes, checksum: eede3dae5ff5a95926b20380cf5aebb7 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents一、 緖論 1
二、 天然氣水合物的基本性質 9
三、 實驗設備與合成材料 13
3.1合成方式選擇及原理介紹 13
3.1.1攪拌法 13
3.1.2 冰晶法 16
3.2合成設備 20
3.3排水集氣式流量計 25
3.4控制記錄系統 30
3.5雜項 32
3.6合成材料與冰晶標本製備 35
四、 實驗流程 38
五、 實驗結果 43
5.1通論 43
5.2加壓及後續加熱階段中的溫壓變化模式 46
5.3初始溫度與加壓速率對合成的影響 50
5.4冰晶大小、標本滲透率及混合石英砂對合成的影響 58
5.5醇類添加物對甲烷水合物合成效率的影響 60
5.6醇類添加物對二氧化碳水合物合成效率的影響 68
六、 討論 73
6.1 冰晶法合成模式及參數影響探討 73
6.1.1 Stage I合成模式 73
6.1.2 影響Stage I水合物生成量之參數 78
6.1.3 Stage II合成模式 79
6.1.4 在Stage I水合物生成量對合成標本組構的影響 81
6.2 在冰晶法中的醇類催化效應探討 84
6.2.1 促進天然氣水合物合成效率之目的 84
6.2.2 以物理機械方式提高天然氣水合物合成效率 89
6.2.2 以物理機械方式提高天然氣水合物合成效率 90
6.2.3 以添加界面活性劑促進天然氣水合物生成 93
6.2.4 以添加化學試劑促進天然氣水合物生成 99
6.2.5 醇類催化模式探討 103
6.2.6 醇類催化效應之可能應用模式 113
七、 結論 118
八、 未來工作 121
參考文獻 122
附錄1 BOOSTER 升壓操作程序 132
附錄2 實驗雜項發現 133
附錄3 天然氣水合物標本SEM觀察 144
附錄4 製備混合沉積物標本配合紅外線熱像儀測試 149
dc.language.isozh-TW
dc.title天然氣水合物合成實驗研究:冰晶法生長機制及醇類催化效應探討zh_TW
dc.titleLaboratory Synthesis of Gas Hydrates: Growth Mechanism of Ice Seed Method and Catalytic Effect of Alcohol Vaporen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee林立虹(Li-Hong Lin),楊燦堯,陳延平,陳立仁
dc.subject.keyword天然氣水合物,實驗合成,冰晶法,催化效應,zh_TW
dc.subject.keywordGas Hydrates,Laboratory Synthesis,Ice Seed Method,Catalytic Effect,en
dc.relation.page152
dc.rights.note有償授權
dc.date.accepted2010-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
6.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved