Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46179
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光禎
dc.contributor.authorYu-Yu Linen
dc.contributor.author林祐瑜zh_TW
dc.date.accessioned2021-06-15T04:56:52Z-
dc.date.available2020-08-02
dc.date.copyright2010-08-02
dc.date.issued2010
dc.date.submitted2010-07-29
dc.identifier.citation[1] NTIA, “U.s. frequency allocation,” in 2003.
[2] J. Yang, “Spatial channel characterization for cognitive radios,” in MS Thesis, UC Berkeley, 2004.
[3] K.-C. Chen and R. Prasad, Cognitive Radio Networks. John Wiley & Sons., 2009.
[4] F. Report and Order, “Federal communication commission std,” in FCC 02-48, Feb. 2002.
[5] J. Mitola, “Cognitive radio: Making software radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, Aug. 1999.
[6] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201–220, Feb. 2005.
[7] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, Sep. 2006.
[8] I. Akyildiz, W. Lee, and K. R. Chowdhury, “Spectrum management in cognitive radio ad hoc networks,” IEEE Network, pp. 6–12, 2009.
[9] F. Drew and T. Jean, Game Theory. Cambridge, 1991.
[10] L. Lai, H. E. Gamal, H. Jiang, and H. Poor, “Cognitive medium access: Exploration, exploitation and competition,” IEEE Transactions on Mobile Computing, 2010.
[11] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,”IEEE Journal on Selected Areas in Communications, vol. 25, no. 3, pp. 589–600, Apr. 2007.
[12] A. T. Hoang, Y.-C. Liang, D. T. C. Wong, R. Zhang, and Z. Y., “Opportunistic spectrum access for energy-constrained cognitive radios,” IEEE Transactions on Wireless Communications, vol. 8, no. 3, pp. 1206–1211, Apr. 2009.
[13] Q. Zhao, S. Geirhofer, and L. Tong, “Opportunistic spectrum access via periodic sensing,” IEEE Transactions on Signal Processing, vol. 56, no. 2, pp. 785–796,Feb. 2008.
[14] S. Huang, X. Liu, and Z. Ding, “Optimization of transmission strategies for opportunistic access in cognitive radio networks,” IEEE Transactions on Mobile
Computing, vol. 8, no. 12, pp. 1636–1648, Dec. 2009.
[15] S. Huang, X. Liu, and Z. Ding, “Optimal sensing-transmission structure for dynamic spectrum access,”in Proc. IEEE INFOCOM, 2009.
[16] W.-Y. Lee and I. F. Akyildiz, “Optimal spectrum sensing framework for cognitive radio networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 10, pp. 3845–3857, Oct. 2008.
[17] Q. Zhao and B. Sadler, “A survey of dynamic spectrum access,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 79–89, May 2007.
[18] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using reference broadcasts,” in Proceedings of the Fifth Symposium on Operating Systems Design and Implementations 2002.
[19] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol for sensor networks,” in Sensys 03.
[20] K. Romer, “Time synchronization in ad hoc networks,” in Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing, October 04-05, 2001, Long Beach, CA, USA.
[21] J. Nieminen, R. Jantti, and L. Qian, “Time synchronization of cognitive radio networks,” in IEEE GLOBECOM 2009.
[22] Z. Ji and K. J. R. Liu, “Dynamic spectrum sharing: A game theoretical overview,” IEEE Communications Magazine, vol. 45, no. 5, pp. 88–94, May 2007.
[23] T. Alpcan and L. Pavel, “Nash equilibrium design and optimization,” in International Conference on Game
Theory for Networks, 2009. GameNets ’09.
[24] R. Etkin, A. Parekh, and D. Tse, “Spectrum sharing for unlicensed band,”IEEE Journal on Selected Areas in Communications, vol. 25, no. 3, pp. 517–528, Apr. 2007.
[25] S. Adlakha, R. Johari, and A. Goldsmith, “Competition in wireless systems via bayesian interference games,” [Online]. Available: http://arxiv.org/abs/0709.0516, Sep. 2007.
[26] C. Zou, T. Jin, C. Chigan, and Z. Tian, “Qos-aware distributed spectrum sharing for heterogeneous wireless cognitive networks,” Elsevier J. Computer Networks, special issue on cognitive wireless networks, vol. 52, no. 4, pp. 864–878, Nov. 2008.
[27] M. Felegyhazi and M. C. andJ. P. Hubaux, “Efficient MAC in cognitive radio systems: A game-theoretic approach,” IEEE Transactions on Wireless Communications, vol. 8, no. 4, pp. 1984–1995, Apr. 2009.
[28] M. Maskery, V. Krishnamurthy, and Q. Zhao, “Decentralized dynamic spectrum access for cognitive radios: Cooperative design of a non-cooperative game,”IEEE Transactions on Communications, vol. 57, no. 2, pp. 459–469, Feb. 2009.
[29] C. Zou and C. Chigan, “A game theoretic DSA-driven MAC framework for cognitive radio networks,” in Proc. IEEE ICC 2008.
[30] D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in cognitive radio networks: Dynamic game, inefficiency of nash equilibrium, and collusion,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 1,
pp. 192–202, Jan. 2008.
[31] D. Niyato and E. Hossain, “Competitive spectrum sharing in cognitive radio networks: a dynamic game approach,” IEEE Transactions on Wireless Communications, vol. 7, no. 1, pp. 2651–2660, 2008.
[32] H.-B. Chang and K.-C. Chen, “Auction-based spectrum management of cognitive radio networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 4, pp. 1923–1935, May 2010.
[33] M. J. Osborne, An Introduction to Game Theory. Oxford, 2004.
[34] A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits on cognitive radio,” in Proc. of Allerton Conf., 2004.
[35] D. Cab, A. Tkachenko, and R. Brodersen, “Experimental study of spectrum sensing based on large scale measurements,” in First Int’l Workshop Technology
and Policy in Accessing Spectrum 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46179-
dc.description.abstract動態頻譜接取伴隨著感知無線電的引進,被認為能有效解決現今固定頻譜分配政策下,所導致的頻譜使用率過低的情形。實際上實現動態頻譜接取機制必須是分散式的。感知無線電自我偵測未被使用的頻譜,並調整傳輸參數以在該頻帶上傳送。在動態頻譜接取中,最關鍵的問題之一是必須解決感知無線電之間對頻譜的競爭,同時必須保證有證照之使用者的服務品質。由於感知無線電分散式和自主的特性,賽局論提供在預測感知無線電的行為上,提供了一個適合的模型,使的我們可以藉由預測感知無線電的行為,設計出相應的系統參數,讓感知無線電能執行在我們所期望的工作區域。在這篇論文中,我們考慮動態頻譜接取中的兩個問題。在第一部分,我們處理與頻譜接取中的通道選擇問題。我們考慮了因為有限的頻譜偵測技術,造成感知無線電只能得到部份的頻譜資訊。在這樣的環境下,我們基於奈許平衡設計出的頻譜選擇策略,即使是在許多使用者的網路中,仍能維持好的表現。在第二部分,我們考慮如何解決在時槽式系統中,在主要系統和感知無線電不完美同步造成的時間誤差下,實現動態頻譜接取的方法。主要系統和感知無線電間的時間誤差,會造成感知無線電頻譜偵測時的錯誤。增加感知無線電偵測頻譜的時間以彌補時間誤差,是一個直覺上的做法。然而,從感知無線電自私的觀點而言,增加偵測頻譜的時間也會造成吞吐量的降低和易損期的增加。為了讓自私的感知無線電能自發地提高頻譜偵測時間,我們找出了相對應的系統最佳運作區域,藉由選擇適當的系統參數,主要系統的服務品質和頻譜使用率都能得到保證。即使在存在時間誤差的情形下,我們提出的方法仍可以保證系統的效能。zh_TW
dc.description.abstractDynamic spectrum access (DSA) with the introduction of cognitive radio (CR) is considered as a promising technology in resolving the underutilization of current fixed spectrum assignment policy. Realistic dynamic spectrum access mechanism for cognitive radio networks (CRN) shall be distributed. CRs sense for spectrum opportunity and adaptively change the transmitting parameters to utilize the spectrum. One of the most critical issue in DSA is to resolve the competition among CRs and guarantee the QoS of licensed users. Due to the distributed and autonomous property of CRs, game theory provides a well-suited model in predicting the behavior of CR users, making it possible for us to design the system parameters accordingly to enforce CRs act at the desired operating region. In this thesis, we consider two issues in DSA from game theoretical point of view. In the first part, we deal with the channel selection problem in DSA. The limitation of sensing capability which result in partial spectrum knowledge is considered. The channel selection strategy is proposed basd on Nash equilibrium solution, which performs well even in large networks. In the second part, we practically consider the DSA in slotted primary system in presence of timing misalignment among primary system users and CRs. Timing misalignment introduce spectrum sensing error for CRs to detect primary system users and hence result in degradation in system throughput. Increase the sensing time that compensate the timing misalignment may be a straightforward solution. However, for selfish CR users, increased sensing time means larger vulnerable period in spectrum competition and degradation in CR throughput. We identify the optimal operating region of asynchronous DSA in which selfish CRs self-enforcingly protract the sensing time such that the primary user is protected and spectrum utilization is maximized. We show that under the properly chosen system parameter, system performance is assured even in presence of timing error.en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:56:52Z (GMT). No. of bitstreams: 1
ntu-99-R97942063-1.pdf: 3212202 bytes, checksum: 25a4182cc8a07dfc7ac248351fe10f3b (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAcknowledgement i
Abstract (Chinese) ii
Abstract iii
Contents v
List of Figures viii
1 Introduction 1
1.1 Dynamic Spectrum Access and Cognitive Radio Networks . . . . . . 1
1.2 Challenges for Dynamic Spectrum Access . . . . . . . . . . . . . . . . 4
1.3 Scope and Propositions of the Thesis . . . . . . . . . . . . . . . . . . 5
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Preliminaries 8
2.1 Introduction to Game Theory . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Basic Elements of Game . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Game with Incomplete Information . . . . . . . . . . . . . . . 11
2.2 Related Work of DSA . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Spectrum Opportunity Exploration and Exploitation . . . . . 14
2.2.2 Game Theoretical DSA . . . . . . . . . . . . . . . . . . . . . . 17
3 Game Theoretical Channel Selection 21
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 Superframe Structure . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Decision Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Optimal Spectrum Sharing Strategy . . . . . . . . . . . . . . . . . . . 24
3.2.1 Spectrum Sharing with Public Spectrum information . . . . . 24
3.2.2 Spectrum Sharing with Private Spectrum information . . . . . 27
3.3 Numerical Example and Simulation Results . . . . . . . . . . . . . . 31
4 Asynchronous Dynamic Spectrum Access 35
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.1 Terminology and Network Topology . . . . . . . . . . . . . . . 36
4.1.2 Imperfect Frame Synchronization . . . . . . . . . . . . . . . . 37
4.1.3 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Utility of CR nodes . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Utility of PS nodes . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Spectrum Utilization . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Example of equilibrium Analysis . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Information Asymmetry and Game Theoretical Analysis . . . 46
4.3.2 Impact of Imperfect Spectrum Sensing . . . . . . . . . . . . . 49
4.4 Sequential Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.1 Spectrum Availability Update . . . . . . . . . . . . . . . . . . 52
4.4.2 CR Access Scheme and Optimal Equilibrium . . . . . . . . . . 54
4.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.1 Asynchronous DSA with incomplete information . . . . . . . . 56
4.5.2 Sequential Decision . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.3 Spectrum utilization for ADSA . . . . . . . . . . . . . . . . . 61
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5 Conclusions and Future Works 64
Bibliography 66
dc.language.isoen
dc.title以賽局論為基礎之感知無線電動態頻譜接取zh_TW
dc.titleGame Theoretical Dynamic Spectrum Access
in Cognitive Radios
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇育德,溫志宏,鄭瑞光
dc.subject.keyword賽局&#63809,感知無線電,動態頻譜接取,時間誤差,非同步,通道選擇,zh_TW
dc.subject.keywordGame Theory,Cognitive Radio,Dynamic Spectrum Access,Timing Misalignment,Asynchronous,Channel Selection,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2010-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved