請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46172
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉?睿(Je-Ruei Liu),陳明汝(Ming-Ju Chen) | |
dc.contributor.author | Shu-Jung Huang | en |
dc.contributor.author | 黃書瑢 | zh_TW |
dc.date.accessioned | 2021-06-15T04:56:34Z | - |
dc.date.available | 2015-08-02 | |
dc.date.copyright | 2010-08-02 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-28 | |
dc.identifier.citation | Alejung, P., W. Shen, B. Rozalska, U. Hellman, A. Ljungh, and T. Wadström. 1994. Purification of collagen-binding proteins of Lactobacillus reuteri NCIB 11951. Curr. Microbiol. 28:231–236.
Annison, G. 1991. Relationship between the levels of soluble nonstarch polysaccharides and the apparent metabolizable energy of wheats assayed in broiler chickens. J. Agric. Food Chem. 39:1252-1256. Akiyama, T., H. Kaku, and N. Shibuya. 1998. Purification, characterization, and NH2-terminal sequencing of an endo-(1 → 3,1 → 4)-β-glucanase from rice (Oryza sativa L.) bran. Plant Sci. 134:3–10. Åvall-Jääskeläinen, S. and A. Palva. 2005. Lactobacillus surface layers and their applications. FEMS Microbiol. Rev. 29:511-529. Bedford, M. R., H. L. Classen, and G. L. Campbell. 1991. The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poult Sci 70:1571-1577. Bernet-Camard, M. F., V. Lievin, D. Brassart, J.R. Neeser, A. L. Servin, and S. Hudault. 1997. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Appl. Environ. Microbiol. 63:2747–2753. Boot, H. J. and P. H. Pouwels. 1996. Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol. Microbiol. 21:1117-1123. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-254. Buist, G., H. Karsens, A. Nauta, D. van Sinderen, G. Venema, and J. Kok.1997. Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl Environ Microbiol. 63: 2722-2728. Buist, G., J. Kok, K. J. Leenhouts, M. Dabrowska, G. Venema, and A. J. Haandrikman. 1995. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J. Bacteriol. 177:1554–1563. Cho, J. S., Y. J. Choi, and D. K. Chung. 2000. Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic Lactobacilli. Curr. Microbiol. 40:257-263. Conway, P. L., S. L. Gorbach, and B. R. Goldin. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70:1-12. De Smet, I., P. De Boever, and W. Verstraete. 1998. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr. 79:185-194. de Vos, W. M. 1999. Safe and sustainable systems for food-grade fermentationsby genetically modified lactic acid bacteria. Int. Dairy J. 9:3-10. Dexvaux, M., E. Dumas, I. Chafsey, and M. Hébraud. 2006. Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol. Lett. 256:1-15. Dieye, Y., S. Usai, F. Clier, A. Gruss, and J. C. Piard. 2001. Design of a protein-targeting system for lactic acid bacteria. J. Bacteriol. 183:4157-4166. Ehrmann, M. A., P. Kurzak, J. Bauer, and R. F. Vogel. 2002. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J. Appl. Microbiol. 92:966-975. Firon, N., I. Ofek, N. Sharon. 1984. Carbohydrate-binding sites of the mannose specific fimbrial lectins of enterobacteria. Infect. Immun. 43:1088-1090. Fujita, Y., S. Takahashi, M. Ueda, A. Tanaka, H. Okada, Y. Morikawa, T. Kawaguchi, M. Arai, H. Fukuda, and A. Kondo. 2002. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68:5136-5141. Fuller, R. and A. Turvey. 1971. Bacteria associated with the intestinal wall of the fowl (Gallus domesticus). J. appl. Bact. 34: 617-622. Fuller, R. 1977. The importance of latobacilli in maintaining normal microbial balance in the crop. Br. Poult. Sci. 18:85-94. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365-78. Gilliland, S. E. 1989. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72:2483-2494. Gorbach, S. L., L. Nahas, P. I. Lerner, and L. Weinstein. 1967. Studies of intestinal microflora. I. Effects of diet, age, and periodic sampling on numbers of fecal microorganisms in man. Gastroenterology. 53:845-55. Gurakan, G. C., A. Bayindirli, Z. B. Ogel, and P. Tanboga. 1998. Short communication: stability of a recombinant plasmid carrying α-amylase gene in Bacillus subtilis. World J. Microbial. Biotechnol. 14:293-295. Guo, Q., W. Zhang, L. L. Ma, Q. H. Chen, J. C. Chen, H. B. Zhang, H. Ruan, and G. Q. He. 2010. A food-grade industrial arming yeast expressing β-1,3-1,4-glucanase with enhanced thermal stability. J. Zhejiang Univ. Sci. B. 11:41-45. Heinemann, C., J. E. Van Hylckama Vlieg, D. B. Janssen, H. J. Busscher, H. C. van der Mei, and G. Reid. 2000. Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiol. Lett. 190:177–180. Hood, S. K., E. A. Zottola. 1987. Electron microscopic study of the adherence properties of Lactobacillus acidophilus. J. Food Sci. 52:791–792. Hung J., C. Rathsam, N. A. Jacques, and P. M. Giffard. 2002. Expression of a streptococcal glucosyltransferase as a fusion to a solute-binding protein in Lactobacillus fermentum BR11. FEMS Microbiol. Lett. 211:71-75. Irvin, J. E. and R. M. Teather. 1988. Cloning and expression of a Bacteriodes succinogenes mixed-linkage β-glucanase (1,3-β-D-glucan 4-glucanohydrolase) gene in Escherichia coli. Appl. Environ. Microbiol. 54:2672-2676. Joachim, K., R. Grasser, H. Pikor, and K. Vogel. 2002. Determination of xylanase, β-glucanase, and cellulose activity. Anal. Bioanal. Chem. 374:80-87. Kociubinski, G., P. Perez, M. Anon, and G. De Antoni. 1996. A method of screening of highly inhibitory lactic acid bacteria. J. Food Prot. 59:1-8. Kondo, A., H. Shigechi, M. Abe, K. Uyama, T. Matsumoto, S. Takahashi, M. Ueda, A. Tanaka, M. Kishimoto, and H. Fukuda. 2002. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl. Microbiol Biotechnol. 58:291-6. Konig, J., R. Grasser, H. Pikor, and K. Vogel. 2002. Determination of xylanase, ß-glucanase, and cellulase activity. Anal. Bioanal. Chem. 374: 80-87. Li C. D., P. Langridge, X. Q. Zhang, P. E. Eckstein, B. G. Rossnagel, R. C. M. Lance, E. B. Lefol, M. Y. Lu, B. L. Harvey, and G. J. Scoles. 2002. Mapping of barley (Hordeum vulgare L.) Beta-amylase alleles in which an amino acid substitution determines beta-amylase isoenzyme type and the level of free beta-amylase. J Cereal Sci. 35:39–50. Lievin-Le, M., V., R. Amsellem, A. L. Servin, and M. H. Coconnier. 2002. Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells. Gut. 50:803–811. Lee, S. Y., J. H. Choi, and Z. Xu. 2003. Microbial cell-surface display. Trends Biotechnol. 21:45-52. Leenhouts, K., G. Buist, and J. Kok. 1999. Anchoring of proteins to lactic acid bacteria. Ant. v. Leeuwenhoek. 76: 367-376. Lindgren, S. E. and W. J. Dobrogosz. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 87: 149-163. Liu, J. R., B. Yu, F. H. Liu, K. J. Cheng, and X. Zhao. 2005. Expression of rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl. Environ. Microbiol. 71:6769–6775. Liu, J. R., B. Yu, F. H. Liu, and K. J. Cheng. 2007. Coexpression of rumen microbial β-glucanase and xylanase genes in Lactobacillus reuteri. Appl. Mirobiol. Biotechnol. 33:354-541. Ljungh, A. and T. Wadström. 2006. Lactic acid bacteria as probiotics. Curr. Issues Intest Microbiol. 7: 73–89. Ljungh, A. and T. Wadström. 2009. Lactobacillus molecular biology: from genomics to probiotics. Asa Ljungh and Torkel Wadström, ed. Caister Academic Press, Norfolk, UK. Ouwehand, A.C., S. Salminen, and E. Isolauri. 2002. Probiotics: an overview of beneficial effects. Ant. v. Leeuwenhoek. 82:279–289. Malathi, V. and G. Devegowda. 2001. In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poult. Sci. 80:302–305. Matsumoto, T., H. Fukuda, M. Ueda, A. Tanaka, and A. Kondo. 2002. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl. Environ. Microbiol 68:4517-4522. McNAB, J. M. and R. R. Smithard. 1992. Barley β-glucan: an antinutritional factor in poultry feeding. Nutr. Res. Rev. 5: 45-60. Messner, P. and U. B. Sleytr. 1992. Crystalline bacterial surface layers. Adv. Microbiol. Physiol. 33:213-275. Miyoshi, Y., S. Okada, T. Uchimura, and E. Satoh. 2006. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci. Biotechnol Biochem. 70:1622-1628. Murai, T., M. Ueda, H. Atomi, Y. Shibasaki, N. Kamasawa, M. Osumi, T. Kawaguchi, M. Arai, and A. Tanaka. 1997. Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48:499-503. Murai, T., M. Ueda, Y. Shibasaki, N. Kamasawa, M. Osumi, T. Imanaka, and A. Tanaka. 1999. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl. Microbiol. Biotechnol. 51:65-70. Narita, J., K. Okano, T. Kitao, S. Ishida, T. Sewaki, M. H. Sung, H. Fukuda, and A. Kondo. 2006. Display of α-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl. Environ. Microbiol. 72:269-275. Okano, K., Q. Zhang, S. Kimura, J. Narita, T. Tanaka, H. Fukuda, and A. Kondo. 2008. System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of lactic acid bacteria. Appl. Environ. Microbiol. 74:1117-1123. Ouwehand A. C., S. Salminen, and E. Isolauri. 2002. Probiotic: an overview of beneficial effects. 82:279-289. Piard, J. C., I. Hautefort, V. A. Fischetti, S. D. Ehrlich, M. Fons, and A. Gruss. 1997. Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J. Bacteriol. 179:3068–3072. Pettersson, D., H. Graham., and P. Aman. 1990. Enzyme supplementation of low or high crude protein concentration diets for broiler chickens. Anim. Prod. 51:399–404. Planas, A., M. Juncosa, J. Lloberas, E. Querol. 1992. Essential catalytic role of Glu134 in endo-beta-1,3-1,4-D-glucan 4-glucanohydrolase from B. licheniformis as determined by site-directed mutagenesis. FEBS Lett. 308:141-145. Planas, A. 2000. Bacterial 1,3-1,4-beta-glucanase: structure, function and protein engineering. Biochim. Biophys. Acta. 1543:361-382. Prasad, J., G. Harsharanjit, J. Smart, and P. K. Gopal. 1998. Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy Journal. 8: 993-1002. Rojas, M., F. Ascencio, and P. L. Conway. 2002. Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl. Environ. Microbiol. 68:2330-2336. Roos, S. and H. Jonsson. 2002. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology. 148:433–442. Sandine, W. E., K. S. Muralidhara, P. R. Elliker, and D. C. England.1972. Lactic acid bacteria in food and health: a review with special reference to enteropathogenic Escherichia coli as well as certain enteric diseases and their treatment with antibiotics and lactobacilli. J. Milk Food Technol. 35: 691-702. Sandgren, M., A. Shaw, T. H. Ropp, S. Wu, R. Bott, A. D. Cameron, J. Stahlberg, C. Mitchinson, and T. A. Jones. 2001. The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 A resolution. J. Mol. Biol. 308:295-310. Sára, M. and U. B. Sleytr. 2000. S-layer proteins. J. Bacteriol. 182:859–868. Schimming, S., W. H. Schwarz, W. L. Staudenbauer. 1991. Properties of a thermoactive beta-1,3-1,4-glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochem. Biophys. Res. Commun. 177:447-452. Sieo, C. C., N. Abdullah, W. S. Tan, and Y. W. Ho. 2005. Influence of β-glucanase-producing Lactobacillus strains on intestinal characteristics and feed passage rate of broiler chickens. Br. Poult. Sci. 84:734–741. Skendi, A., C. G. Biliaderis, A. Larzaridou, and M. S. Izydorczyk. 2003. Struture and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. J. Cereal Sci. 38:15-31. Ståhl, S. and M. Uhlén. 1997. Bacterial surface display: trends and progress. Trends Biotechnol. 15:185-192. Tam, R. and M. H. Saier Jr. 1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57:320–346. Teather, R. M. and J. D. Erfle. 1990. DNA sequence of a Fibrobacter succinogenes mixed-linkage β-glucanase (1,3-1,4-β-D-glucan 4-glucanohydrolase) genes. J. Bacteriol. 172: 3837-3841. Toit, M., C. M. A. P. Franz, L. M. T. Dicks, U. Schillinger, P. Haberer, B. Warlies, F. Ahrens, and W. H. Holzafel. 1998. Characterization and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int. J. Food Microbiol. 40:93-104. Tomme, P., E. Kwan, N. R. Gilkes, D. G. Kilburn, and R. A. Warren. 1996. Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. J. Bacteriol. 187:4216-4223. Tsai LC, L. F. Shyur, Y. S. Cheng, S. H. Lee. 2005. Crystal structure of truncated Fibrobacter succinogenes 1,3-1,4-β-d-glucanase in complex with β-1,3-1,4-cellotriose. J. Mol. Biol. 354:642–651. Tuomola, E. M. and S. J. Salminen. 1998. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol. 41:45–51. Turner, M. S., P. Timms, L. M. Hafner, and P. M. Giffard. 1997. Identification and characterization of a basic cell surface-located protein form Lactobacillus fermentum BR11. J. Bacteriol. 179:3310-3316. Turner, M.S., L. M. Hafner, T. Walsh, and P. M. Giffard. 1999. The bspA locus of Lactobacillus fermentum BR11 encodes an L-cystine uptake system. J. Bacteriol. 181:2192-2198. Turner, M. S., L. M. Hafner, T. Walsh, and P. M. Giffard. 2003. Peptide surface display and secretion using two LPXTG-containing surface proteins from Lactobacillus fermentum BR11. Appl. Environ. Microbiol. 69:5855–5863. Walsh G. A., R. F. Power, and D. R. Headon. 1993. Enzymes in the animals-feed industry. Trends in Biotechnology. 11:424-430. White W. B., H. R. Bird, M. L. Sunde, and J.A. Marlett. 1983.Viscosity of β-glucan as a factor in the enzymatic improvement of barley for chicks. Poult. Sci. 62: 853–862. Wittrup, K. D. 2001. Protein engineering by cell-surface display. Curr Opin Biotechnol. 12:395-399. Yu B, J. R. Liu, F. S. Hsiao, P. W. S. Chiou. 2007. The effect of probiotic Lactobacillus reuteri Pg4 strain on intestinal characteristics and performance in broilers. Asian-Aust J. Anim. Sci. 20:1243-1251. Yu B., J. R. Liu, F. S. Hsiao, and P. W. S. Chiou. 2008. Evaluation of Lactobacillus reuteri Pg4 strain expressing heterologous β-glucanase as a probiotic in poultry diets. Anim. Feed Sci. Technol. 141:82–91. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46172 | - |
dc.description.abstract | 於飼料中添加β-聚葡萄糖酶,可以消除非澱粉多醣的抗營養作用,提高單胃動物的飼料效率。然而,酵素的添加不僅會增加飼料成本,且僅能短暫提高穀物的消化率。乳酸菌為安全且能定殖於腸黏膜,並可在宿主體內發揮許多生理功能,如改善腸胃道菌相、提高免疫能力、減少疾病發生等。微生物表面展現系統(cell surface display)目前已廣泛應用於活疫苗(live vaccines)、生物感測器(biosensor)、生物催化反應(biocatalytic reaction)等領域。 因此,本論文即利用 Lactobacillus reuteri 細胞表面上的膠原吸附蛋白(collagen-binding protein;Cnb)做為攜帶蛋白,將瘤胃細菌 Fibrobacter succinogenes 之 β-聚葡萄糖酶(Glu)接合於Cnb的C端,再由L. reuteri Pg4表達產生Cnb-Glu-His6融合蛋白,並評估L. reuteri Pg4轉形株之β-聚葡萄糖酶活性。經酵素擴散法及聚丙烯醯胺膠體電泳活性染色後發現,β-聚葡萄糖酶可固定於基因重組乳酸菌表面,且比活性顯著高於表達游離型β-聚葡萄糖酶之轉形株。透過間接免疫螢光染色及流式細胞儀分析,證實Cnb-Glu-His6融合蛋白可成功表達並錨定在乳酸菌表面。在益生菌的特性測試中,結果顯示L. reuteri Pg4轉形株與非轉形株具有相似的益生特性。
綜上所述,本研究成功利用乳酸菌細胞表面蛋白質Cnb,將瘤胃微生物來源的β-聚葡萄糖酶固定於L. reuteri Pg4表面,且基因重組乳酸菌的益生菌特性不受其細胞表面展現的重組蛋白所影響。 | zh_TW |
dc.description.abstract | Application of enzymes as feed additives is common in the livestock industry, especially in poultry, to eliminate the antinutritional factors present in the diets of chickens. However, enzyme supplementation substantially increases the cost of feed and is used for only short-term solution in enhancing digestion of cereals. Since lactobacilli possess the mucosal surface-colonizing property and have the potential to express proteins at specific sites, an alternative and less expensive strategy might be designed to develop lactobacilli with the capacity to digest plant structural carbohydrates by inducing of heterologous genes encoding polysaccharide-degrading enzyme.
Thus, the aim of this study was to display the β-glucanase (Glu) from Fibrobacter succinogenes on the cell surface of Lactobacillus reuteri Pg4 via collagen-binding proteins (Cnb), an adhesin in L. reuteri and capable to bind collagen type I. The Glu was fused to the C-terminus of Cnb as a recombinant Cnb-Glu-His6 fusion protein. The analysis of β-glucanase activity revealed that the enzyme was successfully displayed on the cell surface of the Lactobacillus cell. In addition, the specific activity of the displayed Glu on the cell surface of Lactobacillus cells was much improved compared with the free form. Localization of the Cnb-Glu-His6 fusion protein on the cell surface was also confirmed by immunofluorescence microscopy and flow cytometric analysis. Finally, the results of probiotic characterization indicated that the properties of recombinant strain, such as acid tolerance, bile-salt tolerance, and adhesion capability, were similar to that of the parental strain L. reuteri Pg4. In summary, I constructed a Lactobacillus strain that displayed β-glucanase, anchoring on the cell wall in its active form. The probiotic characteristics were not affected by the transgenic construction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:56:34Z (GMT). No. of bitstreams: 1 ntu-99-R97626020-1.pdf: 1742737 bytes, checksum: 7f4c772223fb06ad81989810bca8a3b4 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要......................................................................................................................... 1
英文摘要......................................................................................................................... 2 第一章、序言................................................................................................................. 3 第二章、文獻探討......................................................................................................... 4 一、益生菌..................................................................................................................... 4 二、乳酸桿菌作為益生菌之特性................................................................................. 4 三、β-聚葡萄糖酶於飼料上之應用 ............................................................................. 5 (一)飼料原料的非澱粉多醣............................................................................... 5 (二)非澱粉多醣對單胃動物的抗營養特性....................................................... 6 (三)β-聚葡萄糖酶的來源及作用機制 ............................................................... 6 (四)基因重組乳酸菌表達纖維分解酵素........................................................... 7 四、乳酸菌細胞表面展現技術..................................................................................... 7 (一)細胞表面展現技術的概念........................................................................... 7 (二)乳酸菌細胞表面展現系統........................................................................... 8 (三)微生物細胞表面展現系統於酵素之應用................................................... 9 (四)乳酸桿菌細胞表面展現系統設計............................................................. 10 第三章、材料與方法................................................................................................... 15 一、β-聚葡萄糖酶基因 ............................................................................................... 15 二、菌種及來源........................................................................................................... 15 三、載體....................................................................................................................... 15 四、培養基................................................................................................................... 15 五、試藥及配方........................................................................................................... 15 (一)試藥............................................................................................................. 15 (二)還原糖濃度測定用試藥............................................................................. 17 (三)聚丙烯醯胺膠體電泳分析用試藥............................................................. 17 (四)聚丙烯醯胺膠體電泳活性染色用試藥..................................................... 19 (五)乳酸桿菌勝任細胞製備用試藥................................................................. 19 II 六、實驗儀器............................................................................................................... 19 七、乳酸菌細胞表面展現質體之構築....................................................................... 20 (一)pNZ-cnb質體建構 ..................................................................................... 20 (二)pNZ-cnb/glu質體建構 ............................................................................... 20 八、乳酸桿菌勝任細胞之配製及電穿孔條件........................................................... 21 (一)勝任細胞的製備......................................................................................... 21 (二)電穿孔......................................................................................................... 21 九、蛋白質定量........................................................................................................... 21 十、質體穩定性........................................................................................................... 22 十一、Caco-2細胞培養 .............................................................................................. 22 十二、基因重組乳酸桿菌之纖維分解酵素活性分析............................................... 23 (一)還原糖濃度測定......................................................................................... 23 (二)酵素擴散法................................................................................................. 24 (三)聚丙烯醯胺膠體電泳分析......................................................................... 25 十三、融合蛋白於乳酸桿菌細胞表面展現分析....................................................... 25 (一)間接免疫螢光染色(indirect immunofluorescence stain) ..................... 25 (二)流式細胞儀分析......................................................................................... 26 十四、基因重組乳酸菌之特性分析........................................................................... 26 (一)與Caco-2細胞共同吸附 ........................................................................... 26 (二)耐酸............................................................................................................. 27 (三)耐膽鹽......................................................................................................... 27 十五、統計分析........................................................................................................... 27 第四章、結果與討論................................................................................................... 31 一、β-聚葡萄糖酶基因表達質體之建構 ................................................................... 31 二、菌體細胞表面展現之β-聚葡萄糖酶活性分析 .................................................. 31 三、融合蛋白於乳酸桿菌細胞表面展現分析........................................................... 32 (一)間接免疫螢光染色..................................................................................... 32 (二)流式細胞儀分析......................................................................................... 32 四、基因重組乳酸菌之特性分析............................................................................... 33 (一)基因重組乳酸桿菌之耐酸性分析............................................................. 33 III (二)基因重組乳酸桿菌於膽鹽中耐受性分析................................................. 33 (三)基因重組乳酸桿菌與Caco-2細胞之吸附性 ........................................... 34 五、質體穩定性........................................................................................................... 34 第五章、結論............................................................................................................... 48 參考文獻....................................................................................................................... 49 作者小傳....................................................................................................................... 56 | |
dc.language.iso | zh-TW | |
dc.title | 利用膠原吸附蛋白在乳酸菌細胞表面展現聚葡萄糖酶 | zh_TW |
dc.title | Display of β-glucanase on the cell surface of Lactobacillus using collagen-binding protein | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 余碧(Bi Yu),陳小玲(Hsiao-Ling Chen),劉啟德(Chi-te Liu) | |
dc.subject.keyword | 細胞表面展現技術,乳酸桿菌,β-聚葡萄糖酶,膠原吸附蛋白, | zh_TW |
dc.subject.keyword | cell surface display,Lactobacillus,β-glucanase,collagen-binding proteins, | en |
dc.relation.page | 56 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-29 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。