Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46168
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊長豪
dc.contributor.authorYu-Hsun Huangen
dc.contributor.author黃昱勳zh_TW
dc.date.accessioned2021-06-15T04:56:25Z-
dc.date.available2010-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-30
dc.identifier.citation1. Kempen JH, O'Colmain BJ, Leske MC, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 2004;122(4):552-63.
2. Kowluru RA, Odenbach S. Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes 2004;53(12):3233-8.
3. Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 1996;97(12):2883-90.
4. Miller JW, Adamis AP, Shima DT, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 1994;145(3):574-84.
5. Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. Faseb J 2004;18(12):1450-2.
6. Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007;2007:95103.
7. Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 1991;139(1):81-100.
8. McLeod DS, Lefer DJ, Merges C, Lutty GA. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol 1995;147(3):642-53.
9. Capeans C, De Rojas MV, Lojo S, Salorio MS. C-C chemokines in the vitreous of patients with proliferative vitreoretinopathy and proliferative diabetic retinopathy. Retina 1998;18(6):546-50.
10. You JJ, Yang CH, Huang JS, et al. Fractalkine, a CX3C chemokine, as a mediator of ocular angiogenesis. Invest Ophthalmol Vis Sci 2007;48(11):5290-8.
11. Goede V, Brogelli L, Ziche M, Augustin HG. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 1999;82(5):765-70.
12. Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995;270(45):27348-57.
13. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40(4):405-12.
14. Goto H, Wu GS, Chen F, et al. Lipid peroxidation in experimental uveitis: sequential studies. Curr Eye Res 1992;11(6):489-99.
15. Engerman RL, Kern TS, Larson ME. Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosaemia in dogs. Diabetologia 1994;37(2):141-4.
16. Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp Mol Pathol 2003;75(1):95-108.
17. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 1998;47(6):859-66.
18. Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets 2005;6(4):511-24.
19. Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid Redox Signal 2005;7(11-12):1581-87.
20. Miwa K, Nakamura J, Hamada Y, et al. The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res Clin Pract 2003;60(1):1-9.
21. Mohamed AK, Bierhaus A, Schiekofer S, et al. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 1999;10(2-3):157-67.
22. Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev 2003;19(6):442-55.
23. Kowluru RA, Jirousek MR, Stramm L, et al. Abnormalities of retinal metabolism in diabetes or experimental galactosemia: V. Relationship between protein kinase C and ATPases. Diabetes 1998;47(3):464-9.
24. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271(5 Pt 1):C1424-37.
25. Ranganna K, Yousefipour Z, Nasif R, et al. Acrolein activates mitogen-activated protein kinase signal transduction pathways in rat vascular smooth muscle cells. Mol Cell Biochem 2002;240(1-2):83-98.
26. Uchida K, Kanematsu M, Sakai K, et al. Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci U S A 1998;95(9):4882-7.
27. Du X, Stocklauser-Farber K, Rosen P. Generation of reactive oxygen intermediates, activation of NF-kappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radic Biol Med 1999;27(7-8):752-63.
28. Romeo G, Liu WH, Asnaghi V, et al. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 2002;51(7):2241-8.
29. Kowluru RA, Koppolu P, Chakrabarti S, Chen S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic Res 2003;37(11):1169-80.
30. Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2006;109(3):366-98.
31. Kohda N, Tani T, Nakayama S, et al. Effect of cilostazol, a phosphodiesterase III inhibitor, on experimental thrombosis in the porcine carotid artery. Thromb Res 1999;96(4):261-8.
32. Omi H, Okayama N, Shimizu M, et al. Cilostazol inhibits high glucose-mediated endothelial-neutrophil adhesion by decreasing adhesion molecule expression via NO production. Microvasc Res 2004;68(2):119-25.
33. Hankey GJ, Norman PE, Eikelboom JW. Medical treatment of peripheral arterial disease. Jama 2006;295(5):547-53.
34. Lee JH, Oh GT, Park SY, et al. Cilostazol reduces atherosclerosis by inhibition of superoxide and tumor necrosis factor-alpha formation in low-density lipoprotein receptor-null mice fed high cholesterol. J Pharmacol Exp Ther 2005;313(2):502-9.
35. Otsuki M, Saito H, Xu X, et al. Cilostazol represses vascular cell adhesion molecule-1 gene transcription via inhibiting NF-kappaB binding to its recognition sequence. Atherosclerosis 2001;158(1):121-8.
36. Hattori Y, Suzuki K, Tomizawa A, et al. Cilostazol inhibits cytokine-induced nuclear factor-kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc Res 2009;81(1):133-9.
37. Hotta H, Ito H, Kagitani F, Sato A. Cilostazol, a selective cAMP phosphodiesterase inhibitor, dilates retinal arterioles and increases retinal and choroidal blood flow in rats. Eur J Pharmacol 1998;344(1):49-52.
38. Iwama D, Miyamoto K, Miyahara S, et al. Neuroprotective effect of cilostazol against retinal ischemic damage via inhibition of leukocyte-endothelial cell interactions. J Thromb Haemost 2007;5(4):818-25.
39. Agrawal NK, Maiti R, Dash D, Pandey BL. Cilostazol reduces inflammatory burden and oxidative stress in hypertensive type 2 diabetes mellitus patients. Pharmacol Res 2007;56(2):118-23.
40. Yamasaki Y, Kim YS, Kawamori R. Rationale and protocol of a trial for prevention of diabetic atherosclerosis by using antiplatelet drugs: study of Diabetic Atherosclerosis Prevention by Cilostazol (DAPC study). Cardiovascular Diabetology 2006;(5):16.
41. Yamamoto Y, Yasuda Y, Komiya Y. Cilostazol prevents impairment of slow axonal transport in streptozotocin-diabetic rats. European Journal of Pharmacology 2000;409:1–7.
42. Hotta N, Nakamura J, Sakakibara F, Hamada Y, Hara T, Mori K, Nakashima E, Sasaki H, Kasama N, Inukai S, Koh N. Electroretinogram in sucrose-fed diabetic rats treated with an aldose reductase inhibitor or an anticoagulant. American Journal of Physiology: Endocrinology & Metabolism 1997;273:E965–E971.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46168-
dc.description.abstract1.研究背景:
在已開發中國家的工作人口中,糖尿病視網膜病變仍然是造成失明及視力不良的首要原因。新的證據指出糖尿病視網膜病變與慢性發炎性疾病有共通性,而且發炎作用在糖尿病視網膜病變中佔有舉足輕重的角色。在糖尿病的情況中,白血球變得較無法塑形,造成白血球滯留於視網膜,視網膜血管中細胞黏著分子intercellular adhesion molecule-1 (ICAM-1) 的表現也會增加,會影響內皮細胞作用及視網膜血管灌流狀況,造成血管新生暨通透性增加。發炎的視網膜組織會釋放出更多黏著分子、 cytokine及 chemokine以招募更多淋巴球聚集。在增殖性糖尿病視網膜病變病人的玻璃體中也被證實可偵測出發炎媒介物包括monocyte chemoattractant protein-1 (MCP-1) 及fracktalkine (FKN) 的增加。
氧化壓力 (oxidative stress) 增加會產生過量的活性氧 (reactive oxygen species,ROS),被認為是導致糖尿病視網膜病變的關鍵所在。適當的使用氧化劑可以藉由抑制動物體內的發炎作用,而減緩糖尿病視網膜病變;這些反應可能是透過清除自由基的能力以及增加抗氧化防禦酵素的功能來減少NF-κB的活化、白血球阻滯以及ROS的形成。
Cilostazol是phosphodiesterase 3 (PDE3) 的抑制劑,可以抑制血小板的聚集以及血管擴張而達到動脈血壓下降的效果。目前的研究顯示cilostazol也有潛在的抗氧化及抗發炎的功能,在視網膜短暫缺血後,cilostazol可以藉由抑制cytokines、 黏著分子以及其他發炎媒介物,來減緩白血球與內皮細胞作用以及血小板所造成的組織傷害。同時,在高血壓合併第二型糖尿病的病人身上也被證實cilostazol可以減少免疫負荷以及氧化壓力。
我們假設在糖尿病視網膜病變的致病機轉中, cilostazol 可以透過阻斷NF-κB 活化來減少眾多發炎媒介物及黏著分子的表現,包括 MCP-1, FKN 及ICAM-1。Cilostazol的治療也可以使得糖尿病視網膜中抗氧化防禦酵素的活性增加以及相對應的減少DNA氧化物 (8-hydroxy-2'-deoxyguanosine;8OH-dG)、蛋白質氧化物(nitrotyrosine)與脂肪氧化物(acrolein)。我們將會評估在streptozotocin (STZ) 誘發之糖尿病大鼠模式這些發炎媒介物與氧化壓力的biomarker的表現程度,同時建立起 cilostazol的治療模式來證實 cilostazol在糖尿病視網膜病變中可能有抗發炎及抗氧化的效果。
2.材料及方法:
本研究採用30隻六週大的Wistar雌性大鼠,體重介於 200-250公克。再將其分為正常對照組 (n=10) 及糖尿病組 (n=20)。 20隻糖尿病組大鼠經腹腔內注射60 mg/kg劑量的STZ 來誘發糖尿病。糖尿病大鼠再任意分為兩組:其中10 隻給予兩個月的胃內灌注cilosatzol (18 mg/kg/day),其餘10隻給予兩個月的胃內灌注等量的0.9%生理食鹽水。每週測量所有大鼠的體重及血糖值變化。八週後,每隻大鼠的眼球被取下以取得新鮮的視網膜組織檢體來作研究。為了評估ICAM-1、 MCP-1及FKN在視網膜的表現,我們採用Polymerase chain reaction ( PCR ) 、Western blot analysis和 Immunohistochemical staining(IHC)的方法。而Enzyme-linked immunosorbent assay ( ELISA ) 是用來直接測量ICAM-1、MCP-1及FKN在前房及玻璃體中的濃度。NF-κB在視網膜的活性是使用IHC和Enzyme-linked immunosobent assay(EMSA)的方法來評估。此外,為了評估視網膜中氧化壓力的變化,我們使用IHC的方法來檢查8OH-dG、nitrotyrosine和acrolein在視網膜的含量。
3.結果與討論:
相較於未治療的糖尿病大鼠,在糖尿病大鼠身上給予八週的 cilostazol治療並不會影響到血糖值。 Cilostazol 會抑制ICAM-1、 MCP-1 及 FKN 的 mRNA 和 蛋白質在視網膜的表現,cilostazol 也會抑制發炎作用而減少 ICAM-1、MCP-1及FKN 在前房和玻璃體內的濃度。根據 IHC 和 EMSA 的結果, cilostazol 同樣地也抑制了NF-κB在視網膜中的活性。因過度氧化而產生的8OH-dG、 nitrotyrosine 與 acrolein,在 cilostazol 治療後糖尿病大鼠中視網膜的含量,都有減少的趨勢。
4.結論:
本實驗動物模式證實 cilostazol 的確有保護視網膜的功效,會減少在大鼠之糖尿病視網膜病變中的發炎作用,視網膜中NF-κB的活性受到抑制,受到NF-κB調控的發炎相關物質ICAM-1、MCP-1及FKN的表現也會下降。Cilostazol已被廣泛被研究運用於糖尿病的併發症治療,包括動物模式中的血管病變、神經病變、腎臟病變及視網膜病變等。相信在不久將來,cilostazol有機會成為減少糖尿病患者視力喪失的輔助治療藥物。
zh_TW
dc.description.abstract1.Background:
Among working adults in developed countries, diabetic retinopathy (DR) remains the leading cause of blindness and visual impairment. New evidence indicates that DR shares similarities with chronic inflammatory disease, and inflammation may play a central role in the development of DR. In diabetes, leukocytes become less deformable and retinal leukostasis increases, corresponding to the fact that the expression of cellular adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) are increased in retinal vasculature, which affects retinal endothe¬lial function, retinal perfusion, angiogen¬esis and vascular permeability. The inflamed retina tissues release increased levels of adhesion molecules, cytokines and chemokines for leukocyte recruitment. The concentrations of inflammatory mediators such as monocyte chemoattractant protein-1 (MCP-1) and fracktalkine (FKN) are reported to be increased in the vitreous of patients with proliferative diabetic retinopathy.
It has been suggested that increased oxidative stress, which generates excess reactive oxygen species (ROS), is a key point in the pathogenesis of DR. The use of appropriate antioxidants may have potential to inhibit the inflammatory changes in the development of DR in animals, including activation of NF-κB, leukostasis, and formation of ROS with the ability of scavenging free radicals, or increasing the antioxidants defense enzyme capabilities.
Cilostazol, is a phosphodiesterase 3 (PDE3) inhibitor which results in inhibition of platelet aggregation and vasodilation leading to reduction in arterial pressure. Among recent studies, potent anti-inflammatory and anti-oxidative effects of cilostazol were shown through the suppression of cytokines, adhesion molecules, and other inflammatory mediators leading to leukocyte-endothelial cell interactions and platelet-mediated tissue damage after transient retina ischemia. Besides, it has been reported that cilostazol could reduce inflammatory burden and oxidative stress in hypertensive type 2 diabetes mellitus patients.
We hypothesized that cilostazol inhibits the expression of various inflammatory mediators and adhesion molecules such as MCP-1, FKN and ICAM-1 by blocking NF-κB activation in the development of DR. Treatment with cilostazol could also increase the activity of antioxidants defense enzymes and reduce levels of oxidatively modified DNA (8-hydroxy-2'-deoxyguanosine), oxidatively protein (nitrotyrosine) and oxidative lipids (acrolein) in the diabetic retina. We will assess retinal expression of these inflammatory mediators and oxidative stress biomarkers in streptozotocin (STZ) induced diabetic rat model and set up cilostazol treatment model to define the possible anti-inflammatory and anti-oxidative effect of cilostazol in DR.
2.Material and methods:
Thirty 6 weeks old female Wistar rats with the body weight about 200-250g were divided into a normal control group (n=10) and a STZ-induce diabetic group (n=20). Twenty rats were intraperitoneally injected with STZ to induce diabetes. Eight weeks later, the eyeball of each rat was taken out to obtain fresh retina tissues. We performed polymerase chain reaction (PCR), western blot analysis, hematoxylin and Eosin (H&E) and immunohistochemical staining to assess ICAM-1, MCP-1 and FKN in the retina of rats. The concentrations of ICAM-1, MCP-1 and FKN in the aqueous humor and vitreous cavity were examined by enzyme-linked immunosorbent assay (ELISA). The nuclear factor (NF)-κB activity was assessed by IHC and electrophoresis mobility shift assay (EMSA). Besides, the contents of 8-OHdG, nitrotyrosine and acrolein in the retina were measured by IHC in order to evaluate the change of oxidative stress in the diabetic retina.
3.Results and discussions:
The administration of cilostazol for eight weeks in diabetic rats did not alter the blood glucose levels compared with untreated diabetic rats. Cilostazol inhibits the increase of ICAM-1, MCP-1 and FKN mRNA and protein expression in the retina, as well as the increase of ICAM-1, MCP-1 and FKN contents in the aqueous humor and vitreous cavity. Consistent with these findings, cilostazol attenuated the enhanced activation of NF-κB in diabetic rats by IHC and EMSA findings. The levels of oxidatively modified DNA (8-OHdG), nitrotyrosine and oxidative lipids (acrolein) were also diminished in the cilostazol-treated diabetic group.
4.Conclusions:
Cilostazol reduces inflammatory reactions and oxidative stress in the development of DR. The anti-inflammatory effects of cilostazol is supposed to be mediated by the inhibition of NF-κB activity, and the subsequent decrease in inflammatory mediators such as ICAM-1, MCP-1 and FKN expression in the retina. The effects of cilostazol had been widely studied in the treatment of diabetic vasculopathy, neuropathy, nephropathy and retinopathy of the animal model. In the future, cilostazol may be clinically applied in the treatment of diabetic patients to avoid progressive visual loss.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:56:25Z (GMT). No. of bitstreams: 1
ntu-99-P97421015-1.pdf: 1669072 bytes, checksum: 86b9a880fa7d71021a4a14e3793780ed (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 1
誌謝 4
中文摘要 5-7
第一章 緒論 8-14
1.1 糖尿病視網膜病變簡介 8-9
1.2 氧化壓力與糖尿病視網膜病變致病機轉 9-11
1.3 糖尿病視網膜病變之臨床分期與治療 12-13
1.4 Cilostazol 與糖尿病視網膜病變 14
第二章 研究假說及研究目的 15-16
2.1 研究假說 15
2.2 研究目的 16
第三章 研究方法及材料 17-21
3.1 動物實驗模式 17
3.2 聚合酶連鎖反應 (PCR) 18
3.3 西方墨點轉漬法 (Western blotting) 18-19
3.4 酵素連結免疫分析法(ELISA) 19-20
3.5 免疫組織化學染色法 (IHC) 20
3.6 電泳遷移率檢測 (EMSA) 20-21
3.7 資料收集及統計分析 21
第四章 研究結果 22-24
4.1 大鼠基本資料:體重及血糖 22
4.2 PCR 結果 22
4.3 Western blotting 結果 22-23
4.4 ELISA 結果 23
4.5 IHC 結果 23
4.6 與 NF-κB相關的 IHC 及 EMSA 結果 24
第五章 討論 25
5.1 糖尿病視網膜病變與慢性發炎性疾病的相通性 25
5.2 糖尿病視網膜病變與氧化壓力增加的相關性 25-26
5.3 Cilostazol的抗發炎及抗氧化作用 26-27
第六章 未來展望 28-29
第七章 英文摘要 30-32
第八章 參考文獻 33-37
圖一、 氧化壓力和糖尿病視網膜病變的關聯性 38
圖二、 NF-κB和糖尿病視網膜病變的關聯性 39
圖三、 本研究之假說與cilostazol之藥理機轉 40
圖四、 本實驗動物分組及流程 41
圖五、 PCR 結果 42
圖六、 Western blotting 結果 43
圖七、 ELISA 結果 44
圖八、 ICAM-1、MCP-1及FKN的IHC結果 45
圖九、 8-OHdG、nitrotyrosine與acrolein的IHC結果 46
圖十、 NF-κB p65的IHC結果 47
圖十一、 NF-κB p65的EMSA結果 48
表一、 本實驗進行PCR之特定primers一覽表 49
表二、 西方墨點轉漬法所使用的一級及二級抗體 50
表三、 三組大鼠的體重及血糖變化 51
dc.language.isozh-TW
dc.subject氧化壓力 (oxidative stress)zh_TW
dc.subject普達錠 (cilostazol)zh_TW
dc.subject糖尿病視網膜病變zh_TW
dc.subject血管新生 (angiogenesis)zh_TW
dc.subject活性氧 (reactive oxygen species)zh_TW
dc.subjectDiabetic retinopathyen
dc.subjectCilostazolen
dc.subjectOxidative stressen
dc.subjectAngiogenesisen
dc.subjectROS (reactive oxygen species)en
dc.titleCilostazol在Streptozotocin誘發之糖尿病動物模式中抑制視網膜發炎之療效與機轉zh_TW
dc.titleIntervention with Cilostazol Attenuates Retinal Inflammation in a Streptozotocin-Induced Diabetic Animal Modelen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊中美,楊偉勛
dc.subject.keyword普達錠 (cilostazol),糖尿病視網膜病變,氧化壓力 (oxidative stress),活性氧 (reactive oxygen species),血管新生 (angiogenesis),zh_TW
dc.subject.keywordCilostazol,Diabetic retinopathy,Oxidative stress,ROS (reactive oxygen species),Angiogenesis,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2010-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved