請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46152
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳俊傑(Chun-Chieh Wu) | |
dc.contributor.author | Yi Lu | en |
dc.contributor.author | 呂易 | zh_TW |
dc.date.accessioned | 2021-06-15T04:55:46Z | - |
dc.date.available | 2010-08-04 | |
dc.date.copyright | 2010-08-04 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-29 | |
dc.identifier.citation | Bengtsson, L., 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57–73.
Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornbleuh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539–561. Bove, M. C., J. O’Brien, J. B. Elsner, C. W. Landsea, and X. Niu, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 2477–2482. Broccoli, A., and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17, 1917–1920. Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599–606. Chan, J. C. L., 2006: Comments on“Changes in tropical cyclone number, duration, and intensity in a warming environment.”Science, 311, p. 1713. Chan, J. C. L., and J.-E. Shi, 1996: Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 23, 2765–2767. Chan, J. C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 4590–4602. Chang, E. K. M., and Y. Guo, 2007: Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys. Res. Lett., 34, L14801, doi:10.1029/2007GL030169. Curry, J. A., P. J. Webster, and G. J. Holland, 2006: Mixing politics and science in testing the hypothesis that greenhouse warming is causing a global increase in hurricane intensity. Bull. Amer. Meteor. Soc., 87, 1025–1037. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–atmosphere transfer scheme (BATS) version 1 as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, CO, 72 pp. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719. Elsner, J. B., B. H. Bossak, and X.-F. Niu, 2001: Secular changes to the ENSO-U.S. hurricanes relationship. Geophys. Res. Lett., 28, 4123–4126. Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part 1: Steady-state maintenance. J. Atmos. Sci., 43, 585–604. Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483–485. Emanuel, K. A., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106, 14 771–14 782. Emanuel, K. A., 2005a: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688. Emanuel, K. A., 2005b: Meteorology: Emanuel replies. Nature, 438, E13. Emanuel, K. A., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 5497–5509. Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474–479. Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649–1668. Gualdi, S., E. Scoccimarro and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J. Climate, 21, 5204–5228. Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541. Hoyos, C. D., P. A. Agudelo, P. J. Webster, and J. A. Curry, 2006: Deconvolution of the factors contributing to the increase in global hurricane intensity. Science, 312, 94–97. IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp. Jarvinen, B. R., J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC, 22, 21 pp. Knutson, T. R., and R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed world. Science, 279, 1018–1020. Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 3477–3495. Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nature Geosci., 3, 157-163. Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L0481, doi:10.1029/2006GL028836. Landsea, C. W., 2005: Hurricanes and global warming. Nature, 438, E11–E12. Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88, 197–200. Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221. Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452–454. LaRow, T., Y.-K. Lim, D. Shin, E. Chassignet and S. Cocke, 2008: Atlantic basin seasonal hurricane simulations. J. Climate, 21, 3191–3206. Mann, M. E., K. A. Emanuel, G. L. Holland, and P. J. Webster, 2007: Atlantic tropical cyclones revisited. Eos, Trans. Amer. Geophys. Union, 349–350. Nordeng, T. E., 1995: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Research Department Tech. Memo. 206, 41 pp. Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259–276. Pielke, R. A. J., and C. W. Landsea, 1999: La Niña, El Niño, and Atlantic hurricane damages in the United States. Bull. Amer. Meteor. Soc., 80, 2027–2033. Santer, S. B., and Coauthors, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc. Natl. Acad. Sci., 103, 13905–13910. Stowasser, M., Y. Wang, and K. Hamilton, 2007: Tropical cyclone changes in the western North Pacific in a global warming scenario. J. Climate, 20, 2378–2396. Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249–272. Sun, Z., and L. Rikus, 1999: Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J. Geophys. Res., 104D, 6291–6303. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800. Tsutsui, J., 2002: Implications of anthropogenic climate change for tropical cyclone activity: A case study with the NCAR CCM2. J. Meteor. Soc. Japan, 80, 45–65. Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905. Vitart, F., 2006: Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Q. J. R. Meteorol. Soc., 132, 647–666. Wang Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model—TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 1370–1394. Wang Y., 2002a: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model—TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 3022–3036. Wang Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 1213–1238. Wang Y., 2002c: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239–1262. Wang Y., O. L. Sen, and B. Wang, 2003: A highly resolved regional climate model and its simulation of the 1998 severe precipitation events over China. Part I: Model description and verification of simulations. J. Climate, 16, 1721–1738. Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846. WMO, 2007: Sixth WMO international workshop on tropical cyclones (IWTC-VI): Statement on Tropical Cyclones and Climate Change. WMO, San Joes, Costa Rica, 94 pp. Wu, C.-C., and Coauthors, 2005: Dropsonde observations for typhoon surveillance near the Taiwan region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787–790. Yoshimura, J., S. Masato, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405–428. Yukimoto, S., A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa, and S. Kusunoki, 2006: Present-Day Climate and Climate Sensitivity in the Meteorological Research Institute Coupled GCM, Version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84, 333–363. Zhao, M., Held, I., Lin, S.-J., and Vecchi, G. A., 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J. Clim., 22, 6653–6678. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46152 | - |
dc.description.abstract | 近年來許多研究使用數值模式模擬熱帶氣旋過去的活動和全球暖化假設下的未來投影,但是不同模式間對於熱帶氣旋統計特徵的模擬結果並不一致,存在許多的不確定及敏感性。初始場的擾動對於熱帶氣旋活動的長時間模擬,會使結果產生多大的差異,仍是個有待研究的課題。本研究使用一個高解析度的區域氣候模式(IPRC-RegCM; International Pacific Research Center - Regional Climate Model),模擬過去二十年(1982-2001),每年七月至十月的西北太平洋熱帶氣旋的活動,使用NCEP再分析資料及NOAA海表面溫度資料做為模式的邊界條件,並藉由將初始時間提前一天做為系集成員的產生方法,共有四組系集模擬,其初始時間分別為7/1、6/30、6/29、及6/28。
因為初始場的差異,使得四組系集成員對於熱帶氣旋個數的模擬結果有明顯的不同,表示初始擾動在長時間模擬下,對於熱帶氣旋的統計特徵會有顯著的影響。因此計算每年模擬的熱帶氣旋個數之變異數,並藉由合成分析的方式探討極端變異的年份有何大環境特徵。發現在七月至十月的平均大尺度環流場中,變異程度大的年份和變異程度小的年份,其分別的合成分析結果並沒有明顯的環境特徵差異;但是在逐月的合成分析中,可以發現大小變異年的月平均場顯著的不同。整體而言,模式的結果顯示較有利於熱帶氣旋生成的環境場(如較強的低層幅合、較多的水氣等)和較大的垂直風切,會使模式對於熱帶氣旋個數的模擬結果產生較大的變異度。相信藉由這樣的實驗與分析,可以讓我們對於氣候模式與熱帶氣旋統計特徵的模擬之不確定性與敏感性,有更進一步的認識。 | zh_TW |
dc.description.abstract | A number of studies based on numerical model have been conducted to identify the variations of tropical cyclone activities and their future projections in global warming scenarios. For these studies, the inconsistent responses show the sensitivity and uncertainty on TC statistics in climate models. The issue remains unexplored is how much variability the slightly perturbed initial conditions contribute to statistical TC characteristics in regional climate model. In our study, the high-resolution IPRC (International Pacific Research Center) regional climate model is applied to simulate TC activities in the western North Pacific from 1982 to 2001. The NCEP reanalysis and NOAA OI SST data are used as the boundary conditions to generate four ensemble members, each starting from different initial dates (i.e., 28, 29, 30 June and 1 July).
The large variability of the simulated TC numbers among these four members demonstrates the sensitivity of initial conditions. The variance of TC numbers is calculated, and the years of extreme variance are compared. For JASO mean, our comparison exhibits marked difference of distribution of genesis position between small-variance years and large-variance years but only limited difference in terms of environmental conditions. However, in monthly analysis, favorable conditions of tropical cyclone genesis are found in large-variance years, except for vertical wind shear. It is expected that these results could provide better insights into uncertainty of TC behaviors in numerical models. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:55:46Z (GMT). No. of bitstreams: 1 ntu-99-R97229007-1.pdf: 54582412 bytes, checksum: 9379374c67daa710d42c11585b81a080 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 X 第一章 前言 1 1.1 文獻回顧 1 1.1.1 熱帶氣旋研究之重要性 1 1.1.2 氣候變遷與熱帶氣旋活動變化 2 1.1.2.1 理論推測 2 1.1.2.2 觀測資料 3 1.1.2.3 數值模擬 5 1.1.3 小結 8 1.2 研究動機與目的 9 第二章 研究工具與方法 11 2.1 模式介紹 – IPRC-RegCM 11 2.1.1 方程式與模式架構 11 2.1.2 雲微物理過程 12 2.1.3 次網格參數化 12 2.1.4 紊流作用 12 2.1.5 輻射過程 13 2.1.6 陸地地表過程 13 2.2 使用資料 14 2.2.1 NCEP/NCAR再分析資場 14 2.2.2 NOAA海表面溫度資料 14 2.2.3 JTWC最佳路徑資料 14 2.3 實驗設計 15 2.4 熱帶氣旋之判斷 15 第三章 模擬結果與分析 17 3.1 系集成員之初始場比較 17 3.2 路徑分佈及生成位置 18 3.3 熱帶氣旋個數與年際變化 20 3.4 模擬之熱帶氣旋個數變異及環境場 23 3.4.1 七月至十月平均之分析與比較 23 3.4.1.1 大變異年與小變異年之定義 23 3.4.1.2 熱帶氣旋生成位置之比較 24 3.4.1.3 環境場之比較 25 3.4.1.4 小結與討論 27 3.4.2 逐月之分析與比較 28 3.4.2.1 逐月之熱帶氣旋數量與大小變異年之定義 28 3.4.2.2 環境場之比較 29 3.4.2.3 小結與討論 31 第四章 總結 33 4.1 結論與討論 33 4.2 未來展望 36 參考文獻 38 附圖 45 附表 88 | |
dc.language.iso | zh-TW | |
dc.title | 熱帶氣旋變異度的區域氣候模式模擬分析 | zh_TW |
dc.title | Tropical Cyclone Variability Based on Regional Climate Model Simulation | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許晃雄(Huang-Hsiung Hsu),陳正達(Cheng-Ta Chen),余嘉裕(Jia-Yuh Yu),隋中興(Chung-Hsing Sui) | |
dc.subject.keyword | 熱帶氣旋,變異度,區域氣候模式, | zh_TW |
dc.subject.keyword | tropical cyclone,variability,regional climate model, | en |
dc.relation.page | 93 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 53.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。