Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4612
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃宇廷
dc.contributor.authorChun-Yu Liuen
dc.contributor.author柳君諭zh_TW
dc.date.accessioned2021-05-14T17:44:06Z-
dc.date.available2015-08-11
dc.date.available2021-05-14T17:44:06Z-
dc.date.copyright2015-08-11
dc.date.issued2015
dc.date.submitted2015-07-31
dc.identifier.citation[1] R. Britto, F. Cachazo, B. Feng and E. Witten, Phys. Rev. Lett. 94, 181602 (2005)
[hep-th/0501052].
[2] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, JHEP 1003, 020 (2010) [arXiv:0907.5418 [hep-th]].
[3] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov and J. Trnka, [arXiv:1212.5605 [hep-th]].
[4] O. Aharony, O. Bergman, D. L. Jaeris and J. Maldacena, JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
[5] K. Hosomichi, K. -M. Lee, S. Lee, S. Lee and J. Park, JHEP 0809, 002 (2008) [arXiv:0806.4977 [hep-th]].
[6] S. Lee, Phys. Rev. Lett. 105, 151603 (2010) [arXiv:1007.4772 [hep-th]].
[7] Y. -T. Huang and C. Wen, “ABJM amplitudes and the positive orthogonal Grass-
mannian,” JHEP 1402, 104 (2014) [arXiv:1309.3252 [hep-th]].
[8] Y. -t. Huang, C. Wen and D. Xie, “The Positive orthogonal Grassmannian and loop
amplitudes of ABJM,” [arXiv:1402.1479 [hep-th]].
[9] J. M. Drummond, J. M. Henn and J. Plefka, JHEP 0905, 046 (2009) [arXiv:0902.2987 [hep-th]].
[10] N. Arkani-Hamed and J. Kaplan, JHEP 0804, 076 (2008) [arXiv:0801.2385 [hep-th]].
[11] D. A. McGady and L. Rodina, [arXiv:1408.5125 [hep-th]].
[12] N. Arkani-Hamed, F. Cachazo and J. Kaplan, JHEP 1009, 016 (2010) [arXiv:0808.1446 [hep-th]].
[13] D. Nguyen, M. Spradlin, A. Volovich and C. Wen, JHEP 1007, 045 (2010) [arXiv:0907.2276 [hep-th]].
[14] A. Hodges, JHEP 1307 (2013) [arXiv:1108.2227 [hep-th]].
[15] H. Elvang, Y. t. Huang and C. Peng, JHEP 1109, 031 (2011) [arXiv:1102.4843
[hep-th]].
[16] D. Nandan and C. Wen, JHEP 1208, 040 (2012) [arXiv:1204.4841 [hep-th]].
[17] R. Boels, K. J. Larsen, N. A. Obers and M. Vonk, JHEP 0811, 015 (2008) [arXiv:0808.2598 [hep-th]].
[18] R. H. Boels, D. Marmiroli and N. A. Obers, JHEP 1010, 034 (2010) [arXiv:1002.5029 [hep-th]].
[19] S. He, D. Nandan and C. Wen, JHEP 1102, 005 (2011) [arXiv:1011.4287 [hep-th]]. 44
[20] B. Feng, K. Zhou, C. Qiao and J. Rao, JHEP 1503, 023 (2015) [arXiv:1411.0452 [hep-th]].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4612-
dc.description.abstract本篇文章中將簡短的回顧散射振幅。回顧內容包含兩部分。第一部分裡,我們回顧散射振幅的定義以及旋量螺度,並且使用旋量螺度的方式來表示楊-米爾斯理論的散射振幅。在第二部分中,我們將簡短回顧超對稱。這部分的回顧僅止于使用在建構超對稱散射振幅的基本程度。在這之後我們還會介紹超重力理論。
在概覽完散射振幅的簡介以後,第三部分我們將開始尋找俱有自然性質的建構散射振幅元件。我們將會給出一套系統方式去建構散射振幅,這套模式中每一個建構元件在高能量時都俱有更好的漸進行為z^(-2),就好比散射振幅一樣。我們將在N=7超重力理論中使用布里托、卡查索、馮以及維滕的遞迴關係,並且使用特定的動量形變以展現更好的漸進行為。並且我們將會解釋這個更好的行為是因為使用了N=8超重力理論中的附加關係式。
zh_TW
dc.description.abstractWe review some ideas of scattering amplitudes. The review consists of two parts. In Part I, we review the definition of scattering amplitudes and spinor helicity. We use the technology of spinor helicity to represent scattering amplitudes in Yang-Mills theory. In part II, we review supersymmetry. The review will be on a basic level to introduce superamplitudes. We then introduce supergravity amplitudes. After introducing amplitudes, we search for natural building blocks for supergravity amplitudes in part III. We want to show a systematic way to find the building blocks which are term-by-term bonus z^(-2) large momentum scaling just like amplitudes. For a given choice of deformation legs, we present such an expansion in the form of the Britto, Cachazo, Feng and Witten recursion relation in N=7 supergravity based on a special shift. We will show that this improved scaling behavior, with respect to the fully N=8 representation, is due to its automatic incorporation of the so called bonus relations.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:44:06Z (GMT). No. of bitstreams: 1
ntu-104-R02245006-1.pdf: 7784617 bytes, checksum: 46a65f17c6fad8068f2056a6e31d3581 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1 Introduction ............................................................. 3
Part I
2 Spinor Formalism ..................................................... 6
2.1 RepresentationofLorentzgroup............................... 6
2.2 SpinorFields .......................................................... 9
2.3 Yang-MillsTheory ................................................. 11
2.4 LittleGroup............................................................ 12
3 BCFW Recursion Relation ......................................... 13
3.1 BCFW.................................................................... 14
3.2 Multi-stepBCFW.................................................... 17
Part II
4 Supersymmetry ....................................................... 18
4.1 N=1Supersymmetry ............................................. 19
4.2 SupersymmetryWardIdentities............................... 22
4.3 N=4SuperYang-MillsTheory.................................. 23
4.4 SuperBCFW .......................................................... 25
4.5 N=8SupergravityAmplitudes................................. 26
Part III
5 Bonus scaling and BCFW in N = 7 supergravity ........ 28
5.1 N=7 superamplitudes............................................ 29
5.1.1 From N=8 to N=7 ................................................ 29
5.1.2 BCFW in the N=7 formalism .................................. 31
5.2 Bonus z scaling of N=7“badshift”BCFW terms ............. 32
5.2.1 A particular [-,+> test shift: NkMHV amplitudes....... 32
5.2.2 General [-,+> test shifts: the MHV case ...................... 35
5.2.3 Comparison to other formulas for supergravity amplitudes . . . . 36
5.3 N =8 bonus relations and N =7 bonus scaling: the MHV case . . . . . 36
5.4 Bonus scaling of “bad shift” BCFW for string amplitudes . . . . . . . . . 38
6 Conclusion and Future directions ....................................41
A Derivation of P.................................................................43
Reference............................................................................44
dc.language.isoen
dc.subject超重力zh_TW
dc.subject散射振幅zh_TW
dc.subject旋量螺度zh_TW
dc.subject遞迴關係zh_TW
dc.subject超對稱zh_TW
dc.subjectSupergravityen
dc.subjectRecursion relations Supersymmetryen
dc.subjectScattering amplitudesen
dc.subjectSpinor helicityen
dc.title在N=7超重力理論中優化漸進趨勢以及BCFWzh_TW
dc.titleBonus Scaling and BCFW in N=7 Supergravityen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賀培銘,細道和夫
dc.subject.keyword散射振幅,旋量螺度,遞迴關係,超對稱,超重力,zh_TW
dc.subject.keywordScattering amplitudes,Spinor helicity,Recursion relations Supersymmetry,Supergravity,en
dc.relation.page45
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf7.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved