請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46127完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹東榮(Tong-Rong Jan) | |
| dc.contributor.author | Chi-Fang Wu | en |
| dc.contributor.author | 吳季芳 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:54:50Z | - |
| dc.date.available | 2015-08-02 | |
| dc.date.copyright | 2010-08-02 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-29 | |
| dc.identifier.citation | Abbas, A. K., Lichtman, A. H., and Pillai, S. (2007). Cellular and Molecular Immunology, 6th Edition. Saunders, Philadelphia.
Achour, A., Lachgar, A., Astgen, A., Chams, V., Bizzini, B., Tapiero, H., and Zagury, D. (1997). Potentialization of IL-2 effects on immune cells by oyster extract (JCOE) in normal and HIV-infected individuals. Biomed Pharmacother 51, 427-429. Acton, S. L., Scherer, P. E., Lodish, H. F., and Krieger, M. (1994). Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem 269, 21003-21009. Adachi, Y., Okazaki, M., Ohno, N., and Yadomae, T. (1994). Enhancement of cytokine production by macrophages stimulated with (1-->3)-beta-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biol Pharm Bull 17, 1554-1560. Akramiene, D., Kondrotas, A., Didziapetriene, J., and Kevelaitis, E. (2007). Effects of beta-glucans on the immune system. Medicina (Kaunas) 43, 597-606. Ariizumi, K., Shen, G. L., Shikano, S., Xu, S., Ritter, R., 3rd, Kumamoto, T., Edelbaum, D., Morita, A., Bergstresser, P. R., and Takashima, A. (2000). Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem 275, 20157-20167. Assanasen, C., Mineo, C., Seetharam, D., Yuhanna, I. S., Marcel, Y. L., Connelly, M. A., Williams, D. L., de la Llera-Moya, M., Shaul, P. W., and Silver, D. L. (2005). Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J Clin Invest 115, 969-977. Atmaca, G. (2004). Antioxidant effects of sulfur-containing amino acids. Yonsei Med J 45, 776-788. Bac, P., Pages, N., Dhalluin, S., and Tapiero, H. (1998). Protective effect of Crassostrea gigas extract on audiogenic seizures in magnesium deficient mice. Biomed Pharmacother 52, 162-165. Baran, A., Bicak, E., Baysal, S. H., and Onal, S. (2007). Comparative studies on the adsorption of Cr (VI) ions on to various sorbents. Bioresour Technol 98, 661-665. Brandt, E. B., Strait, R. T., Hershko, D., Wang, Q., Muntel, E. E., Scribner, T. A., Zimmermann, N., Finkelman, F. D., and Rothenberg, M. E. (2003). Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest 112, 1666-1677. Brown, G. D., and Gordon, S. (2003). Fungal beta-glucans and mammalian immunity. Immunity 19, 311-315. Brown, G. D., and Gordon, S. (2005). Immune recognition of fungal beta-glucans. Cell Microbiol 7, 471-479. Brown, G. D., Taylor, P. R., Reid, D. M., Willment, J. A., Williams, D. L., Martinez-Pomares, L., Wong, S. Y., and Gordon, S. (2002). Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196, 407-412. Bush, R. K., and Hefle, S. L. (1996). Food allergens. Crit Rev Food Sci Nutr 36 Suppl, S119-163. Byeon, S. E., Lee, J., Lee, E., Lee, S. Y., Hong, E. K., Kim, Y. E., and Cho, J. Y. (2009). Functional activation of macrophages, monocytes and splenic lymphocytes by polysaccharide fraction from Tricholoma matsutake. Arch Pharm Res 32, 1565-1572. Chan, G. C., Chan, W. K., and Sze, D. M. (2009). The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol 2, 25. Chan, W. K., Law, H. K., Lin, Z. B., Lau, Y. L., and Chan, G. C. (2007). Response of human dendritic cells to different immunomodulatory polysaccharides derived from mushroom and barley. Int Immunol 19, 891-899. Chen, J., and Seviour, R. (2007). Medicinal importance of fungal beta-(1-->3), (1-->6)-glucans. Mycol Res 111, 635-652. Crowe, S. E., and Perdue, M. H. (1992). Gastrointestinal food hypersensitivity: basic mechanisms of pathophysiology. Gastroenterology 103, 1075-1095. Czop, J. K., and Austen, K. F. (1985). A beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol 134, 2588-2593. Diniz, S. N., Nomizo, R., Cisalpino, P. S., Teixeira, M. M., Brown, G. D., Mantovani, A., Gordon, S., Reis, L. F., and Dias, A. A. (2004). PTX3 function as an opsonin for the dectin-1-dependent internalization of zymosan by macrophages. J Leukoc Biol 75, 649-656. Friend, D. S., Ghildyal, N., Austen, K. F., Gurish, M. F., Matsumoto, R., and Stevens, R. L. (1996). Mast cells that reside at different locations in the jejunum of mice infected with Trichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype. J Cell Biol 135, 279-290. Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S., and Underhill, D. M. (2003). Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197, 1107-1117. Gate, L., Schultz, M., Walsh, E., Dhalluin, S., Nguyen Ba, G., Tapiero, H., and Tew, K. D. (1998). Impact of dietary supplement of Crassostrea gigas extract (JCOE) on glutathione levels and glutathione S-transferase activity in rat tissues. In Vivo 12, 299-303. Gurish, M. F., and Austen, K. F. (2001). The diverse roles of mast cells. J Exp Med 194, F1-5. Hahn, P. Y., Evans, S. E., Kottom, T. J., Standing, J. E., Pagano, R. E., and Limper, A. H. (2003). Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J Biol Chem 278, 2043-2050. Herre, J., Marshall, A. S., Caron, E., Edwards, A. D., Williams, D. L., Schweighoffer, E., Tybulewicz, V., Reis e Sousa, C., Gordon, S., and Brown, G. D. (2004). Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104, 4038-4045. Inoue, K., Takano, H., Koike, E., Yanagisawa, R., Oda, T., Tamura, H., Adachi, Y., Ishibashi, K., and Ohno, N. (2009). Candida soluble cell wall beta-glucan facilitates ovalbumin-induced allergic airway inflammation in mice: Possible role of antigen-presenting cells. Respir Res 10, 68. Kimura, Y., Sumiyoshi, M., Suzuki, T., and Sakanaka, M. (2007). Inhibitory effects of water-soluble low-molecular-weight beta-(1,3-1,6) d-glucan purified from Aureobasidium pullulans GM-NH-1A1 strain on food allergic reactions in mice. Int Immunopharmacol 7, 963-972. Kindt, T. J., Goldsby, R. A., and Osborne, B. A. (2007). Kuby Immunology. W.H. Freeman and Company, New York. Kirmaz, C., Bayrak, P., Yilmaz, O., and Yuksel, H. (2005). Effects of glucan treatment on the Th1/Th2 balance in patients with allergic rhinitis: a double-blind placebo-controlled study. Eur Cytokine Netw 16, 128-134. Kweon, M. N., Yamamoto, M., Kajiki, M., Takahashi, I., and Kiyono, H. (2000). Systemically derived large intestinal CD4(+) Th2 cells play a central role in STAT6-mediated allergic diarrhea. J Clin Invest 106, 199-206. Lin, Y. L., Lee, S. S., Hou, S. M., and Chiang, B. L. (2006). Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice. Mol Pharmacol 70, 637-644. Lin, Y. L., Liang, Y. C., Lee, S. S., and Chiang, B. L. (2005). Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and p38 mitogen-activated protein kinase pathways. J Leukoc Biol 78, 533-543. Marcinkiewicz, J., Mak, M., Bobek, M., Biedron, R., Bialecka, A., Koprowski, M., Kontny, E., and Maslinski, W. (2005). Is there a role of taurine bromamine in inflammation? Interactive effects with nitrite and hydrogen peroxide. Inflamm Res 54, 42-49. Nakagawa, Y., Ohno, N., and Murai, T. (2003). Suppression by Candida albicans beta-glucan of cytokine release from activated human monocytes and from T cells in the presence of monocytes. J Infect Dis 187, 710-713. Olson, E. J., Standing, J. E., Griego-Harper, N., Hoffman, O. A., and Limper, A. H. (1996). Fungal beta-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages. Infect Immun 64, 3548-3554. Peiser, L., Mukhopadhyay, S., and Gordon, S. (2002). Scavenger receptors in innate immunity. Curr Opin Immunol 14, 123-128. Pennarun, A. L., Prost, C., Haure, J., and Demaimay, M. (2003). Comparison of two microalgal diets. 1. Influence on the biochemical and fatty acid compositions of raw oysters (Crassostrea gigas). J Agric Food Chem 51, 2006-2010. Prioult, G., and Nagler-Anderson, C. (2005). Mucosal immunity and allergic responses: lack of regulation and/or lack of microbial stimulation? Immunol Rev 206, 204-218. Rice, P. J., Kelley, J. L., Kogan, G., Ensley, H. E., Kalbfleisch, J. H., Browder, I. W., and Williams, D. L. (2002). Human monocyte scavenger receptors are pattern recognition receptors for (1-->3)-beta-D-glucans. J Leukoc Biol 72, 140-146. Ross, G. D. (2000). Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/alphaMbeta2-integrin glycoprotein. Crit Rev Immunol 20, 197-222. Ross, G. D., Vetvicka, V., Yan, J., Xia, Y., and Vetvickova, J. (1999). Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 42, 61-74. Saito, K., Yajima, T., Nishimura, H., Aiba, K., Ishimitsu, R., Matsuguchi, T., Fushimi, T., Ohshima, Y., Tsukamoto, Y., and Yoshikai, Y. (2003). Soluble branched beta-(1,4)glucans from Acetobacter species show strong activities to induce interleukin-12 in vitro and inhibit T-helper 2 cellular response with immunoglobulin E production in vivo. J Biol Chem 278, 38571-38578. Schorey, J. S., and Lawrence, C. (2008). The pattern recognition receptor Dectin-1: from fungi to mycobacteria. Curr Drug Targets 9, 123-129. Sicherer, S. H., and Sampson, H. A. (2006). 9. Food allergy. J Allergy Clin Immunol 117, S470-475. Stuyven, E., Verdonck, F., Van Hoek, I., Daminet, S., Duchateau, L., Remon, J. P., Goddeeris, B. M., and Cox, E. (2010). Oral administration of beta-1,3/1,6-glucan to dogs temporally changes total and antigen-specific IgA and IgM. Clin Vaccine Immunol 17, 281-285. Suzuki, Y., Adachi, Y., Ohno, N., and Yadomae, T. (2001). Th1/Th2-Balancing immunomodulating activity of gel-forming (1-->3)-beta-glucans from fungi. Biol Pharm Bull 24, 811-819. Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376. Tanaka, K., Ikeda, I., Kase, A., Koba, K., Nishizono, S., Aoyama, T., and Imaizumi, K. (2003). Effects of feeding oyster, Crassostrea gigas, on serum and liver lipid levels in rats. J Nutr Sci Vitaminol (Tokyo) 49, 100-106. Taylor, P. R., Brown, G. D., Reid, D. M., Willment, J. A., Martinez-Pomares, L., Gordon, S., and Wong, S. Y. (2002). The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169, 3876-3882. Taylor, S. L., and Hefle, S. L. (2001). Food allergies and other food sensitivities. In Food technology, pp. 68-83. Institute of food technologists, Chicago. Taylor, S. L., Stratton, J. E., and Nordlee, J. A. (1989). Histamine poisoning (scombroid fish poisoning): an allergy-like intoxication. J Toxicol Clin Toxicol 27, 225-240. Tsukada, C., Yokoyama, H., Miyaji, C., Ishimoto, Y., Kawamura, H., and Abo, T. (2003). Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of beta-glucan. Cell Immunol 221, 1-5. Tzianabos, A. O. (2000). Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 13, 523-533. Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, and M, E. (2008). Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, New York. Vetvicka, V., and Yvin, J. C. (2004). Effects of marine beta-1,3 glucan on immune reactions. Int Immunopharmacol 4, 721-730. Volman, J. J., Ramakers, J. D., and Plat, J. (2008). Dietary modulation of immune function by beta-glucans. Physiol Behav 94, 276-284. Wakshull, E., Brunke-Reese, D., Lindermuth, J., Fisette, L., Nathans, R. S., Crowley, J. J., Tufts, J. C., Zimmerman, J., Mackin, W., and Adams, D. S. (1999). PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan receptor. Immunopharmacology 41, 89-107. Wang, S. Y., Hsu, M. L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S., and Ho, C. K. (1997). The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer 70, 699-705. Williams, D. L. (1997). Overview of (1-->3)-beta-D-glucan immunobiology. Mediators Inflamm 6, 247-250. Yoshikawa, T., Naito, Y., Masui, K., Fujii, T., Boku, Y., Nakagawa, S., Yoshida, N., and Kondo, M. (1997). Free radical-scavenging activity of Crassostera gigas extract (JCOE). Biomed Pharmacother 51, 328-332. Young, S. H., Ye, J., Frazer, D. G., Shi, X., and Castranova, V. (2001). Molecular mechanism of tumor necrosis factor-alpha production in 1-->3-beta-glucan (zymosan)-activated macrophages. J Biol Chem 276, 20781-20787. Zekovic, D. B., Kwiatkowski, S., Vrvic, M. M., Jakovljevic, D., and Moran, C. A. (2005). Natural and modified (1-->3)-beta-D-glucans in health promotion and disease alleviation. Crit Rev Biotechnol 25, 205-230. Zimmerman, J. W., Lindermuth, J., Fish, P. A., Palace, G. P., Stevenson, T. T., and DeMong, D. E. (1998). A novel carbohydrate-glycosphingolipid interaction between a beta-(1-3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J Biol Chem 273, 22014-22020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46127 | - |
| dc.description.abstract | 多醣體是由單醣或雙醣等碳水化合物藉由糖苷鍵鍵結聚合而成的結構,β-glucan是常在細菌或黴菌細胞壁中發現的多醣體,對於先天或後天免疫皆具有免疫調節作用。而多醣體依其鍵結和分枝形式的不同,其水溶性、分子量、三級結構、分枝程度及構形皆會有所不同,而這些特性都可能會其免疫調節作用。
目前為止,尚未有文獻報告有來自於關動物來源之β-glucan的免疫調節作用。本論文以萃取自牡蠣 (Crassostrea gigas) 的多醣體 (OPS) 來進行其對T細胞媒介之免疫反應作用的影響。本研究所使用之OPS其中97.98%為葡萄糖單醣聚合物,1.8%為蛋白質。單醣間的鍵結71.31%為1,4-glucosidic linkage,5.71%為1,3,4-glucosidic linkage,2.83%為terminal glucose,其中β-glucan含量約為23.82%,分子量約為435 kDa。BALB/c小鼠在以卵白蛋白免疫前以管餵方式每日投與OPS一次,連續給予三天。結果指出活體給予小鼠OPS可增加其脾臟細胞的代謝活性,而且脾臟細胞分泌的IFN-γ上升,IL-4則下降,使小鼠之免疫反應朝Th1發展。為進一步了解OPS是否具有Th1/Th2免疫調節的效果,本研究利用Th2反應為主的小鼠食物過敏模式來進行研究。小鼠經過兩次卵白蛋白免疫後再以大量卵白蛋白誘發其發生過敏性下痢的臨床症狀。結果顯示,給予小鼠OPS可降低小鼠下痢發生率,亦可降低其十二指腸黏膜組織的受損程度。藉由toluidine blue及免疫組織化學染色,發現OPS降低肥胖細胞浸潤及去顆粒化的數目,也會降低IL-4陽性細胞的數目。綜合上述,本論文的研究結果顯示,OPS為一具有免疫調節活性的天然成分,其潛力可應用於Th2相關的免疫疾病。 | zh_TW |
| dc.description.abstract | Polysaccharides are polymeric carbohydrate structures, formed of repeating units (either mono- or di-saccharides) joined together by glycosidic bonds. β-glucans, are commonly found in the cell wall of bacteria and fungi, which possess immunomodulatory activity affecting both innate and adaptive immunity. Differences in the type of linkage and branching, polysaccharides can vary in solubility, molecular mass, tertiary structure, degree of branching and conformation; all these characteristics may influence their immune modulating effects.
To date, no evidence is available pertaining to the immunomodulatory activity of polysaccharides derived from animal origins. The present study aimed to investigate the effects of polysaccharide extracted from oyster (Crassostrea gigas) on T-cell reactivity. The oyster polysaccharide (OPS) used in the present study contains 97.98% glucose polymers and 1.8% proteins. The glycosidic bonds between mono-saccharides are 1,4-glucosidic linkage (71.31%), 1,3,4-glucosidic linkage (5.71%), and terminal glucose (2.83%). OPS contain about 23.82% β-glucan. The molecular weight of OPS is approximately 435 kDa. BALB/c mice were administered with OPS by gavage for three consecutive days prior to ovalbumin (OVA) sensitization. It demonstrated that OPS administration skewed the immune responses toward Th1 direction. The level of IFN-γ produced by splenocytes was elevated, whereas IL-4 was decreased. To further investigate the effect of OPS on Th1/Th2 immunobalance, a Th2-dominant murine food allergy model was employed. After two OVA sensitization, mice were repeatedly challenge a large amount OVA to induce allergic diarrhea. Results showed that OPS attenuated the occurrence of allergic diarrhea. OPS prevented the morphological change of duodenum. By toluidine blue and IHC staining, OPS administration was found to decrease the number of infiltrated and degranulated mast cells and IL-4+ cells. Results from the present study implicated that OPS may be a potential therapeutic agent for management of Th2-dominant disorders. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:54:50Z (GMT). No. of bitstreams: 1 ntu-99-R97629008-1.pdf: 4409127 bytes, checksum: 19cd7800e5e7b74d65f125059b7ca99d (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract IV Figures X Table XII Appendix XIII Abbreviations XIV Chapter 1 Introduction 1 1.1 Oyster and its biological effects 1 1.2 β-glucans 2 1.2.1 Sources of β-glucans 2 1.2.2 Effects of β-glucans on immune cells 3 1.2.2.1 Effects of β-glucans on immune cells in vitro 4 1.2.2.2 In vivo immunomodulatory effects of β-glucans 6 1.2.3 Receptors of β-glucans 8 1.3 Th1 and Th2 subsets of CD4+ T lymphocytes 11 1.4 Food allergies 13 1.5 Objective of the study 16 Chapter 2 Material and Methods 18 2.1 Reagents and oyster polysaccharides 18 2.2 Animals 20 2.3 Experimental animal models 20 2.3.1 Protocol of OPS administration and OVA sensitization 20 2.3.2 Protocol of murine food allergy model 20 2.4 Culture of splenocytes 21 2.5 Measurement of the metabolic activity of splenocytes by an MTT assay 22 2.6 Measurement of cytokines by enzyme-linked immunosorbent assay (ELISA) 22 2.7 ELISA for serum antibodies 23 2.7.1 Measurement of serum OVA-specific IgM, IgG1, IgG2a 23 2.7.2 Measurement of serum total IgE 24 2.8 Analysis of the cellularity and lymphocyte subsets of splenocytes 25 2.9 Analysis of the cellularity and lymphocyte subsets of peripheral blood mononuclear cells (PBMC) 25 2.10 RNA isolation 26 2.11 Reverse transcriptase-polymerase chain reaction (RT-PCR) 26 2.12 Necropsy and intestinal tissue preparation 27 2.13 Immunohistochemical (IHC) staining 28 2.14 Morphometric analysis and IHC staining quantification 28 2.15 Statistical analysis 29 Chapter 3 Results 32 3.1 The in vivo effect of OPS on the functionality of T cells 32 3.1.1 Effect of OPS on the metabolic activity of splenocytes 32 3.1.2 Effect of OPS on cytokine production by splenocytes 32 3.1.3 Effect of OPS on OVA-specific IgM, IgG1, IgG2a and total IgE 33 3.1.4 Effect of OPS on the cellularity and lymphocyte subsets of splenocytes 34 3.1.5 Effect of OPS on the cellularity and lymphocyte subsets of PBMC 34 3.1.6 Effect of OPS administration on the mRNA expression of cytokines and transcription factors in splenocytes 34 3.2 Effect of OPS on food allergy 35 3.2.1 Effect of OPS on the occurrence of allergic diarrhea 35 3.2.2 Effect of OPS on OVA-specific IgG1, IgG2a and total IgE in mice with food allergy 35 3.2.3 Effect of OPS on the metabolic activity of splenocytes of mice with food allergy 36 3.2.4 Effect of OPS on OVA-stimulated cytokine production by splenocytes of mice with food allergy 36 3.2.5 Effect of OPS on hisotological change of the duodenum of mice with food allergy 37 3.2.6 Effect of OPS on the infiltration and degranulation of mast cells in the duodenum 37 3.2.7 Effect of OPS on the infiltration of IL-4+ cells in duodenum 38 Chapter 4 Discussion 56 Reference 62 | |
| dc.language.iso | en | |
| dc.subject | 免疫調節 | zh_TW |
| dc.subject | 食物過敏 | zh_TW |
| dc.subject | T細胞 | zh_TW |
| dc.subject | 多醣體 | zh_TW |
| dc.subject | 牡蠣 | zh_TW |
| dc.subject | oyster | en |
| dc.subject | polysaccharide | en |
| dc.subject | immunomodulation | en |
| dc.subject | T cell | en |
| dc.subject | food allergy | en |
| dc.title | 牡蠣多醣體對卵白蛋白誘發之T細胞免疫反應之作用 | zh_TW |
| dc.title | The Effect of Oyster Polysaccharides on T Cell-mediated
Immune Response in Ovalbumin-sensitized Mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏孝萍(Shiaw-Pyng Wey),黃良得(Lean-Teik Ng),林中天(Chung-Tien Lin) | |
| dc.subject.keyword | 牡蠣,多醣體,免疫調節,T細胞,食物過敏, | zh_TW |
| dc.subject.keyword | oyster,polysaccharide,immunomodulation,T cell,food allergy, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-30 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
