請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4611完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江伯倫(Bor-Luen Chiang) | |
| dc.contributor.author | Chien-Hui Chien | en |
| dc.contributor.author | 簡芊卉 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:44:05Z | - |
| dc.date.available | 2017-09-24 | |
| dc.date.available | 2021-05-14T17:44:05Z | - |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-31 | |
| dc.identifier.citation | 1. Stone, K.D., C. Prussin, and D.D. Metcalfe, IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol, 2010. 125(2 Suppl 2): p. S73-80.
2. Renauld, J.C., New insights into the role of cytokines in asthma. J Clin Pathol, 2001. 54(8): p. 577-89. 3. Georas, S.N., et al., T-helper cell type-2 regulation in allergic disease. Eur Respir J, 2005. 26(6): p. 1119-37. 4. Galli, S.J., M. Tsai, and A.M. Piliponsky, The development of allergic inflammation. Nature, 2008. 454(7203): p. 445-54. 5. Corry, D.B., et al., Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med, 1996. 183(1): p. 109-17. 6. Wenzel, S., et al., Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med, 2013. 368(26): p. 2455-66. 7. Wills-Karp, M., et al., Interleukin-13: central mediator of allergic asthma. Science, 1998. 282(5397): p. 2258-61. 8. Menzies-Gow, A., et al., Anti-IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J Allergy Clin Immunol, 2003. 111(4): p. 714-9. 9. Kearley, J., et al., IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am J Respir Crit Care Med, 2011. 183(7): p. 865-75. 10. Hams, E. and P.G. Fallon, Innate type 2 cells and asthma. Curr Opin Pharmacol, 2012. 12(4): p. 503-9. 11. Brightling, C.E., et al., Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med, 2002. 346(22): p. 1699-705. 12. Holgate, S., et al., Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy, 2009. 64(12): p. 1728-36. 13. Shaw, D.E., et al., Association between neutrophilic airway inflammation and airflow limitation in adults with asthma. Chest, 2007. 132(6): p. 1871-5. 14. Manni, M.L., et al., The complex relationship between inflammation and lung function in severe asthma. Mucosal Immunol, 2014. 7(5): p. 1186-98. 15. Weiner, H.L., Oral tolerance, an active immunologic process mediated by multiple mechanisms. J Clin Invest, 2000. 106(8): p. 935-7. 16. Mayer, L. and L. Shao, Therapeutic potential of oral tolerance. Nat Rev Immunol, 2004. 4(6): p. 407-19. 17. Adel-Patient, K., et al., Oral tolerance and Treg cells are induced in BALB/c mice after gavage with bovine beta-lactoglobulin. Allergy, 2011. 66(10): p. 1312-21. 18. Mucida, D., et al., Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest, 2005. 115(7): p. 1923-33. 19. Russo, M., et al., Suppression of asthma-like responses in different mouse strains by oral tolerance. Am J Respir Cell Mol Biol, 2001. 24(5): p. 518-26. 20. Zhang, X., et al., Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol, 2001. 167(8): p. 4245-53. 21. Taketomi, E.A., et al., Differential IgE reactivity to Der p 1 and Der p 2 allergens of Dermatophagoides pteronyssinus in mite-sensitized patients. J Investig Allergol Clin Immunol, 2006. 16(2): p. 104-9. 22. Miranda, D.O., et al., Serum and salivary IgE, IgA, and IgG4 antibodies to Dermatophagoides pteronyssinus and its major allergens, Der p1 and Der p2, in allergic and nonallergic children. Clin Dev Immunol, 2011. 2011: 302739. 23. Melamed, D. and A. Friedman, Direct evidence for anergy in T lymphocytes tolerized by oral administration of ovalbumin. Eur J Immunol, 1993. 23(4): p. 935-42. 24. Chen, Y., et al., Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature, 1995. 376(6536): p. 177-80. 25. du Pre, M.F. and J.N. Samsom, Adaptive T-cell responses regulating oral tolerance to protein antigen. Allergy, 2011. 66(4): p. 478-90. 26. Shiokawa, A., et al., IL-10 and IL-27 producing dendritic cells capable of enhancing IL-10 production of T cells are induced in oral tolerance. Immunol Lett, 2009. 125(1): p. 7-14. 27. Tsuji, N.M., K. Mizumachi, and J. Kurisaki, Antigen-specific, CD4+CD25+ regulatory T cell clones induced in Peyer's patches. Int Immunol, 2003. 15(4): p. 525-34. 28. Curotto de Lafaille, M.A., et al., Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity, 2008. 29(1): p. 114-26. 29. Tsuji, N.M. and A. Kosaka, Oral tolerance: intestinal homeostasis and antigen-specific regulatory T cells. Trends Immunol, 2008. 29(11): p. 532-40. 30. Thornton, A.M. and E.M. Shevach, Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol, 2000. 164(1): p. 183-90. 31. Pabst, O. and A.M. Mowat, Oral tolerance to food protein. Mucosal Immunol, 2012. 5(3): p. 232-9. 32. Bilsborough, J., et al., Mucosal CD8alpha+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology, 2003. 108(4): p. 481-92. 33. Park, M.J., et al., Indoleamine 2,3-dioxygenase-expressing dendritic cells are involved in the generation of CD4+CD25+ regulatory T cells in Peyer's patches in an orally tolerized, collagen-induced arthritis mouse model. Arthritis Res Ther, 2008. 10(1): R11. 34. Sun, C.M., et al., Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med, 2007. 204(8): p. 1775-85. 35. Iwata, M., et al., Retinoic acid imprints gut-homing specificity on T cells. Immunity, 2004. 21(4): p. 527-38. 36. Benson, M.J., et al., All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med, 2007. 204(8): p. 1765-74. 37. D'Orazio, T.J. and J.Y. Niederkorn, Splenic B cells are required for tolerogenic antigen presentation in the induction of anterior chamber-associated immune deviation (ACAID). Immunology, 1998. 95(1): p. 47-55. 38. Skelsey, M.E., E. Mayhew, and J.Y. Niederkorn, Splenic B cells act as antigen presenting cells for the induction of anterior chamber-associated immune deviation. Invest Ophthalmol Vis Sci, 2003. 44(12): p. 5242-51. 39. Ashour, H.M. and J.Y. Niederkorn, Peripheral tolerance via the anterior chamber of the eye: role of B cells in MHC class I and II antigen presentation. J Immunol, 2006. 176(10): p. 5950-7. 40. Hibi, M., et al., Splenic dendritic cells from antigen-fed mice induced antigen-specific T cell unresponsiveness in vivo. Cytotechnology, 2003. 43(1-3): p. 41-8. 41. Park, M.J., et al., A distinct tolerogenic subset of splenic IDO(+)CD11b(+) dendritic cells from orally tolerized mice is responsible for induction of systemic immune tolerance and suppression of collagen-induced arthritis. Cell Immunol, 2012. 278(1-2): p. 45-54. 42. Gutgemann, I., et al., A blood-borne antigen induces rapid T-B cell contact: a potential mechanism for tolerance induction. Immunology, 2002. 107(4): p. 420-5. 43. Qin, S.X., et al., Induction of classical transplantation tolerance in the adult. J Exp Med, 1989. 169(3): p. 779-94. 44. Davies, J.D., et al., T cell suppression in transplantation tolerance through linked recognition. J Immunol, 1996. 156(10): p. 3602-7. 45. Cobbold, S.P., et al., Connecting the mechanisms of T-cell regulation: dendritic cells as the missing link. Immunol Rev, 2010. 236: p. 203-18. 46. Wise, M.P., et al., Linked suppression of skin graft rejection can operate through indirect recognition. J Immunol, 1998. 161(11): p. 5813-6. 47. Cook, C.H., et al., Spontaneous renal allograft acceptance associated with 'regulatory' dendritic cells and IDO. J Immunol, 2008. 180(5): p. 3103-12. 48. Brown, K., S.H. Sacks, and W. Wong, Coexpression of donor peptide/recipient MHC complex and intact donor MHC: evidence for a link between the direct and indirect pathways. Am J Transplant, 2011. 11(4): p. 826-31. 49. Cobbold, S.P. and H. Waldmann, Regulatory cells and transplantation tolerance. Cold Spring Harb Perspect Med, 2013. 3(6): a015545. 50. Eynon, E.E. and D.C. Parker, Small B cells as antigen-presenting cells in the induction of tolerance to soluble protein antigens. J Exp Med, 1992. 175(1): p. 131-8. 51. Raimondi, G., et al., Induction of peripheral T cell tolerance by antigen-presenting B cells. I. Relevance of antigen presentation persistence. J Immunol, 2006. 176(7): p. 4012-20. 52. Raimondi, G., et al., Induction of peripheral T cell tolerance by antigen-presenting B cells. II. Chronic antigen presentation overrules antigen-presenting B cell activation. J Immunol, 2006. 176(7): p. 4021-8. 53. Murray, S.E., K.G. Toren, and D.C. Parker, Peripheral CD4(+) T-cell tolerance is induced in vivo by rare antigen-bearing B cells in follicular, marginal zone, and B-1 subsets. Eur J Immunol, 2013. 43(7): p. 1818-27. 54. Gonnella, P.A., H.P. Waldner, and H.L. Weiner, B cell-deficient (mu MT) mice have alterations in the cytokine microenvironment of the gut-associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance. J Immunol, 2001. 166(7): p. 4456-64. 55. Thomas, H.C. and M.V. Parrott, The induction of tolerance to a soluble protein antigen by oral administration. Immunology, 1974. 27(4): p. 631-9. 56. Constant, S.L., B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J Immunol, 1999. 162(10): p. 5695-703. 57. Chu, K.H. and B.L. Chiang, Regulatory T cells induced by mucosal B cells alleviate allergic airway hypersensitivity. Am J Respir Cell Mol Biol, 2012. 46(5): p. 651-9. 58. Chen, X. and P.E. Jensen, Cutting edge: primary B lymphocytes preferentially expand allogeneic FoxP3+ CD4 T cells. J Immunol, 2007. 179(4): p. 2046-50. 59. Zhong, X., et al., Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur J Immunol, 2007. 37(9): p. 2400-4. 60. Tu, W., et al., Efficient generation of human alloantigen-specific CD4+ regulatory T cells from naive precursors by CD40-activated B cells. Blood, 2008. 112(6): p. 2554-62. 61. Zheng, J., et al., CD40-activated B cells are more potent than immature dendritic cells to induce and expand CD4(+) regulatory T cells. Cell Mol Immunol, 2010. 7(1): p. 44-50. 62. Reichardt, P., et al., Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood, 2007. 110(5): p. 1519-29. 63. Hsu, L.H., et al., A B-1a cell subset induces Foxp3 T cells with regulatory activity through an IL-10-independent pathway. Cell Mol Immunol, 2015. 12(3): 354-65. 64. Gagliani, N., et al., Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med, 2013. 19(6): p. 739-46. 65. Groux, H., et al., A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature, 1997. 389(6652): p. 737-42. 66. Akbari, O., et al., Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med, 2002. 8(9): p. 1024-32. 67. Yao, Y., et al., Tr1 Cells, but not Foxp3+ regulatory T cells, suppress NLRP3 inflammasome activation via an IL-10-dependent mechanism. J Immunol, 2015. 195(2): 488-97. 68. Ilarregui, J.M., et al., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol, 2009. 10(9): p. 981-91. 69. Cedeno-Laurent, F., et al., Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J Immunol, 2012. 188(7): p. 3127-37. 70. Eychene, A., N. Rocques, and C. Pouponnot, A new MAFia in cancer. Nat Rev Cancer, 2008. 8(9): p. 683-93. 71. Morito, N., et al., Overexpression of c-Maf contributes to T-cell lymphoma in both mice and human. Cancer Res, 2006. 66(2): p. 812-9. 72. Kim, J.I., et al., Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci U S A, 1999. 96(7): p. 3781-5. 73. Imaki, J., et al., Developmental contribution of c-maf in the kidney: distribution and developmental study of c-maf mRNA in normal mice kidney and histological study of c-maf knockout mice kidney and liver. Biochem Biophys Res Commun, 2004. 320(4): p. 1323-7. 74. Tsuchiya, M., et al., Transcriptional factors, Mafs and their biological roles. World J Diabetes, 2015. 6(1): p. 175-83. 75. Cao, S., et al., The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J Immunol, 2005. 174(6): p. 3484-92. 76. Kim, J.I., et al., The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity, 1999. 10(6): p. 745-51. 77. Ho, I.C., et al., The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell, 1996. 85(7): p. 973-83. 78. Xu, J., et al., c-Maf regulates IL-10 expression during Th17 polarization. J Immunol, 2009. 182(10): p. 6226-36. 79. Apetoh, L., et al., The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol, 2010. 11(9): p. 854-61. 80. Wu, H.Y., et al., In vivo induction of Tr1 cells via mucosal dendritic cells and AHR signaling. PLoS One, 2011. 6(8): e23618. 81. Tanaka, S., et al., Sox5 and c-Maf cooperatively induce Th17 cell differentiation via RORgammat induction as downstream targets of Stat3. J Exp Med, 2014. 211(9): p. 1857-74. 82. Neumann, C., et al., Role of Blimp-1 in programing Th effector cells into IL-10 producers. J Exp Med, 2014. 211(9): p. 1807-19. 83. Iwasaki, Y., et al., Interleukin-27 in T cell immunity. Int J Mol Sci, 2015. 16(2): p. 2851-63. 84. Pflanz, S., et al., IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity, 2002. 16(6): p. 779-90. 85. Pflanz, S., et al., WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol, 2004. 172(4): p. 2225-31. 86. Lucas, S., et al., IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc Natl Acad Sci U S A, 2003. 100(25): p. 15047-52. 87. Pot, C., et al., Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol, 2009. 183(2): p. 797-801. 88. Awasthi, A., et al., A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol, 2007. 8(12): p. 1380-9. 89. Carrier, Y., et al., Enhanced GITR/GITRL interactions augment IL-27 expression and induce IL-10-producing Tr-1 like cells. Eur J Immunol, 2012. 42(6): p. 1393-404. 90. Larousserie, F., et al., Differential effects of IL-27 on human B cell subsets. J Immunol, 2006. 176(10): p. 5890-7. 91. Yoshimoto, T., et al., Induction of IgG2a class switching in B cells by IL-27. J Immunol, 2004. 173(4): p. 2479-85. 92. Batten, M., et al., IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. J Exp Med, 2010. 207(13): p. 2895-906. 93. Sato, Y., et al., IL-27 affects helper T cell responses via regulation of PGE2 production by macrophages. Biochem Biophys Res Commun, 2014. 451(2): p. 215-21. 94. Lee, C.C., et al., Construction of a Der p2-transgenic plant for the alleviation of airway inflammation. Cell Mol Immunol, 2011. 8(5): p. 404-14. 95. van Rijt, L.S., et al., A rapid flow cytometric method for determining the cellular composition of bronchoalveolar lavage fluid cells in mouse models of asthma. J Immunol Methods, 2004. 288(1-2): p. 111-21. 96. Sugimoto, N., et al., Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol, 2006. 18(8): p. 1197-209. 97. Yadav, M., et al., Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med, 2012. 209(10): p. 1713-22, S1-19. 98. Karlsson, M.R., et al., Hypersensitivity and oral tolerance in the absence of a secretory immune system. Allergy, 2010. 65(5): p. 561-70. 99. Suzuki, K., et al., Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: induction of allergen-specific oral tolerance without bystander suppression. Plant Biotechnol J, 2011. 9(9): p. 982-90. 100. Yasue, M., et al., Inhibition of airway inflammation in rDer f 2-sensitized mice by oral administration of recombinant der f 2. Cell Immunol, 1997. 181(1): p. 30-7. 101. Hauet-Broere, F., et al., Functional CD25- and CD25+ mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application. Eur J Immunol, 2003. 33(10): p. 2801-10. 102. Unger, W.W., et al., Nasal tolerance induces antigen-specific CD4+CD25- regulatory T cells that can transfer their regulatory capacity to naive CD4+ T cells. Int Immunol, 2003. 15(6): p. 731-9. 103. Keir, M.E., et al., Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med, 2006. 203(4): p. 883-95. 104. Fife, B.T., et al., Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol, 2009. 10(11): p. 1185-92. 105. Wang, L., et al., Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci U S A, 2008. 105(27): p. 9331-6. 106. Fukaya, T., et al., Crucial roles of B7-H1 and B7-DC expressed on mesenteric lymph node dendritic cells in the generation of antigen-specific CD4+Foxp3+ regulatory T cells in the establishment of oral tolerance. Blood, 2010. 116(13): p. 2266-76. 107. Chemnitz, J.M., et al., SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol, 2004. 173(2): p. 945-54. 108. Polanczyk, M.J., et al., Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol, 2007. 19(3): p. 337-43. 109. Amarnath, S., et al., Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1. PLoS Biol, 2010. 8(2): e1000302. 110. Miyamoto, K., et al., The ICOS molecule plays a crucial role in the development of mucosal tolerance. J Immunol, 2005. 175(11): p. 7341-7. 111. Ito, T., et al., Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med, 2007. 204(1): p. 105-15. 112. Zheng, J., et al., ICOS regulates the generation and function of human CD4+ Treg in a CTLA-4 dependent manner. PLoS One, 2013. 8(12): e82203. 113. Choi, C.Y., et al., Nivalenol inhibits total and antigen-specific IgE production in mice. Toxicol Appl Pharmacol, 2000. 165(1): p. 94-8. 114. Severino, L., et al., Mycotoxins nivalenol and deoxynivalenol differentially modulate cytokine mRNA expression in Jurkat T cells. Cytokine, 2006. 36(1-2): p. 75-82. 115. Pellegrino, S., et al., Molecular insights into dimerization inhibition of c-Maf transcription factor. Biochim Biophys Acta, 2014. 1844(12): p. 2108-2115. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4611 | - |
| dc.description.abstract | 口服耐受性被認為由數種機制達成,包含特異性T細胞凋亡、特異性T細胞無應性、特異性調節性T細胞生成,然而詳細完整的機制尚未了解透徹。本研究目的為探討在多種過敏原致敏的個體,透過餵食單一過敏原而誘發單一特異性口服耐受性,是否具調節不同特異性過敏反應的功能。本實驗利用化學鍵結兩種實驗常用抗原—卵清蛋白 (ovalbumin) 和 β-乳球蛋白 (β-lactoglobulin),以此鍵結抗原 (BLG-conjugated OVA,B-O) 致敏小鼠,探究餵食其中一種抗原,是否能保護小鼠免於另一抗原誘發的呼吸道發炎反應。實驗發現餵食卵清蛋白有效避免β-乳球蛋白誘發的抗原特異性反應,包含血清中特異性免疫球蛋白E (BLG-specific IgE)、呼吸道過度反應 (airway hyperresponsiveness)、肺部細胞浸潤、呼吸道發炎反應。餵食β-乳球蛋白也可減緩卵清蛋白誘發的過敏反應。利用帶有單一T細胞受體小鼠 (DO11.10 mouse),發現餵食卵清蛋白可增進CD4+CD25+ T細胞的非抗原特異性抑制功能。轉送帶有卵清蛋白短鏈 (OVA323-339 peptide) 的B細胞到DO11.10小鼠,可促使脾臟細胞和脾臟CD4+ T細胞對卵清蛋白短鏈產生無應性,暗示脾臟B細胞可能呈獻卵清蛋白短鏈誘發調節性T細胞生成,而參與口服耐受性。口服抗原活化的CD4+CD25+ T細胞與B細胞誘發的調節性T細胞 (Treg-of-B cells) 具數個相似處,包含兩者皆表達誘導T細胞共刺激分子 (inducible T-cell co-stimulator,ICOS) 和程序性細胞死亡蛋白質1 (programmed cell death 1,PD1)、分泌介白素10 (interleukin-10,IL-10) 和轉化生長因子β (transforming growth factor-β,TGF-β)、具有非抗原特異性抑制功能。此結果暗示脾臟B細胞誘發之調節性T細胞,有可能參與在口服耐受性複雜的非特異性抑制機制中。單一過敏原產生的口服耐受性具潛力調節相關性過敏原的不當反應,此效果可見於調節性T細胞與不當反應的特異性T細胞共同存在的環境中,在鍵結抗原誘發的過敏性氣喘模式中,此非特異性調節潛力可更清楚呈現。
另外,我們探究重複給予呈獻抗原的B細胞,對B細胞誘發的調節性T細胞 (Treg-of-B cells) 生成的影響。我們發現在第三輪B細胞誘發的調節性T細胞 (Treg-of-B3rd cells) 中,表現介白素10 (IL-10) 的細胞比例增加,介白素的表達量也有增加。同時,介白素10也在第三輪B細胞誘發的調節性T細胞的抑制功能中扮演角色。第三輪B細胞誘發的調節性T細胞和B細胞誘發的調節性T細胞相比,仍然維持表達誘導T細胞共刺激分子 (ICOS)、程序性細胞死亡蛋白質1 (PD1)、毒殺T淋巴球相關抗原4 (cytotoxic T-lymphocyte associated antigen 4, CTLA4) 和抑制功能。我們也發現主要表達介白素10的細胞群,大多侷限在表達肌肉腱膜纖維肉瘤癌基因同源物 (avian musculo-aponeurotic fibrosarcoma oncogene homolog, c-Maf) 的細胞群中。在培養過程中,介白素10、、介白素4、轉化生長因子β、介白素27都有逐漸增加的趨勢。此結果顯示,多次給予呈獻抗原的B細胞具有能力誘發T細胞成為介白素10表達的細胞,可能透過可能透過介白素27與和轉化生長因子β的調控。 總結地說,我們的研究成果顯示B細胞誘發的調節性T細胞,具有非抗原特異性抑制功能,而且可能參與在複雜的口服耐受性機制中。另一部分,多次給予呈獻抗原的B細胞具有能力,透過活化肌肉腱膜纖維肉瘤癌基因同源物使T細胞成為表達介白素10的細胞。在未來研究,會著重在肌肉腱膜纖維肉瘤癌基因同源物的表達與否和B細胞誘發的調節性T細胞的抑制能力是否有關,以及肌肉腱膜纖維肉瘤癌基因同源物是否有協同其他蛋白共同調控介白素10的基因表現 。 | zh_TW |
| dc.description.abstract | Although oral tolerance has been considered the result of a number of protective mechanisms, the real mechanisms of oral tolerance are yet to be defined. The present study was aimed to determine whether a single allergen-induced oral tolerance would affect the immune responses to other related allergens that were primed together with the orally treated allergen. We investigated whether oral administration of a single antigen would protect the conjugated antigen-sensitized mice from the other antigen induced airway inflammation. We found that oral administration of ovalbumin (OVA) was able to prevent the immune responses to β-lactoglobulin (BLG) in BLG-conjugated OVA (B-O) sensitized mice and vice versa. Oral administration of antigen enhanced the suppressive potential of CD4+CD25+ T cells to inhibit non-antigen-specific T cell proliferation. The B cell-induced regulatory T (referred to as Treg-of-B) cells showed several similarities with orally treated CD4+CD25+ T cells, including the expression of inducible T-cell co-stimulator (ICOS) and programmed cell death 1 (PD1), the production of interleukin (IL)-10 and transforming growth factor (TGF)-β, and the non-antigen-specific suppressive ability, and therefore might play a role in the sophisticated mechanism of oral tolerance. The results suggested that single allergen induced oral tolerance had the ability to modulate the immune responses to other related allergens and was able to be more clearly detected in our conjugated antigen-induced asthmatic model.
In addition, we investigated the effect of re-encounter the antigen-presenting B cells on the generation of Treg-of-B cells. We found that the IL-10-producing population and production of IL-10 increased in Treg-of-B3rd cells. IL-10 also played a role in the suppressive function of Treg-of-B3rd cells. Treg-of-B3rd cells maintained expressions of ICOS, PD1, and cytotoxic T-lymphocyte associated antigen 4 (CTLA4) and the suppressive abilities as that of Treg-of-B1st cells. The major population of IL-10-producing Treg-of-B3rd cells was confined to the avian musculo-aponeurotic fibrosarcoma oncogene homolog (c-Maf)-expressing population. The levels of IL-10, IL-4, IL-27, and TGF-β increased gradually during the generation of Treg-of-B3rd cells. These results suggested that re-encounter the antigen-presenting B cells converted CD4+CD25- T cells into IL-10-producing Treg-of-B3rd cells and the pathway of IL-27/TGF-β-c-Maf might be involved. In summary, our results suggested that Treg-of-B cells had a non-antigen-specific suppressive function and might play a role in the sophisticated mechanism of oral tolerance. Moreover, re-encounter the antigen-presenting B cells induced IL-10-producing CD4+ Treg-of-B3rd cells via activation of c-Maf. In the future, the upstream signaling activated generation of IL-10-producing Treg-of-B cells, the relationship between c-Maf and the suppressive function of Treg-of-B cells required further research and the binding proteins of c-Maf in the regulation of IL-10 or other genes required more investigations as well. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:44:05Z (GMT). No. of bitstreams: 1 ntu-104-D98449003-1.pdf: 7732346 bytes, checksum: 5acf35df74cc484aaa0e9569c39b3e9d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii Contents vi Figure Contents x Chapter I -- Introduction 1 1.1 Allergic asthma 2 1.2 Oral tolerance 4 1.3 MLN and PP in oral tolerance 5 1.4 Spleen in peripheral tolerance 6 1.5 Non-antigen-specific tolerogenic effect in transplantation 7 1.6 B cells in tolerance 8 1.7 B cells in oral tolerance 9 1.8 B cells induced tolerogenic CD4+ T cells in vitro 10 1.9 Multiple ways for generation of IL-10-producing CD4+ T cells 11 1.10 c-Maf 12 1.11 c-Maf transactivates IL-10 gene expression 13 1.12 IL-27 15 1.13 IL-27-induced IL-10-producing CD4+ T cells 15 1.14 IL-27 on APCs 16 1.15 Hypothesis and specific aims 17 Chapter II -- Materials and Methods 19 2.1 Animals 20 2.2 Generation of BLG-conjugated OVA 20 2.3 Induction of allergic asthma model and oral tolerance 20 2.4 Adoptive transfer 21 2.5 Measurement of airway hyperresponsiveness and airway resistance 21 2.6 Bronchoalveolar lavage fluid study 22 2.7 Cytokine analysis 23 2.8 Antibody analysis 23 2.9 Analysis of orally OVA-treated CD4+CD25+ T cells 23 2.10 Enriched BLG-specific T cells 24 2.11 Preparation of Treg-of-B cells 24 2.12 Preparation of Treg-of-B1st, Treg-of-B2nd, and Treg-of-B3rd cells 25 2.13 Preparation of Tr1 cells 25 2.14 Preparation of T-of-DC1st cells 26 2.15 3H incorporation assay 26 2.16 Neutralization of IL-10 27 2.17 Flow cytometry 27 2.18 Statistical analysis 28 Chapter III --- Results 30 3.1 Oral administration of single antigen inhibited the other antigen-induced immune responses in conjugated-antigen-sensitized mice 31 3.2 Oral administration of antigens increased the expression of regulatory markers and the levels of regulatory cytokines of CD4+CD25+ T cells 32 3.3 Oral administration of antigens enhanced the suppressive functions of CD4+CD25+ T and CD4+CD25- T cells 33 3.4 B cells presented antigen to naive CD4+ T cells and led to an anergic response 33 3.5 Treg-of-B cells shared some characteristics with orally treated CD4+CD25+ T cells 34 3.6 Single-antigen-specific Treg-of-B cells exhibited the antigen-specific and non-antigen-specific suppressive abilities 35 3.7 Single antigen-specific Treg-of-B cells protected conjugated antigen-sensitized mice from the other antigen challenge 37 3.8 Re-encounter the antigen-presenting B cells induced IL-10-producing T cells without addition of IL-10 38 3.9 Treg-of-B3rd cells maintained characteristics and were similar to Treg-of-B1st cells 39 3.10 IL-10 played an important role in the suppressive function of Treg-of-B3rd cells 39 3.11 Treg-of-B3rd cells expressed c-Maf but not Foxp3 40 3.12 Antigen-presenting B cells induced naive CD4+CD25- T cells in a tolerogenic way 41 Chapter IV --- Discussion 42 4.1 Non-antigen-specific tolerogenic effect of oral tolerance 44 4.2 Role of B cells as antigen-presenting cells in oral tolerance 46 4.3 Expressions of ICOS and PD1 in Treg-of-B and orally treated CD4+CD25+ T cells 47 4.4 Role of B cells as antigen-presenting cells induced Treg cells 49 4.5 Antigen-presenting B cells induced T cells in a tolerogenic way 50 4.6 Conclusions 51 4.7 Future prospects 52 References 55 Figures 67 Appendix 108 | |
| dc.language.iso | en | |
| dc.subject | 肌肉腱膜纖維肉瘤癌基因同源物 | zh_TW |
| dc.subject | 口服耐受性 | zh_TW |
| dc.subject | 調節性T細胞 | zh_TW |
| dc.subject | 呼吸道發炎反應 | zh_TW |
| dc.subject | 過敏性氣喘 | zh_TW |
| dc.subject | 介白素10表達的T細胞 | zh_TW |
| dc.subject | airway inflammation | en |
| dc.subject | c-Maf | en |
| dc.subject | IL-10-producing T cells | en |
| dc.subject | allergic asthma | en |
| dc.subject | Oral tolerance | en |
| dc.subject | regulatory T cells | en |
| dc.title | 研究單一過敏原誘發口服耐受性抑制鍵結過敏原致敏小鼠呼吸道發炎反應的免疫調節機轉 | zh_TW |
| dc.title | Study on the Immune Regulatory Mechanisms of Single Allergen-Induced Oral Tolerance Inhibits Airway Inflammation in Conjugated Allergen Immunized Mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 司徒惠康,郭敏玲,莊雅惠,繆希椿 | |
| dc.subject.keyword | 口服耐受性,調節性T細胞,呼吸道發炎反應,過敏性氣喘,介白素10表達的T細胞,肌肉腱膜纖維肉瘤癌基因同源物, | zh_TW |
| dc.subject.keyword | Oral tolerance,regulatory T cells,airway inflammation,allergic asthma,IL-10-producing T cells,c-Maf, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-07-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 7.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
