Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46116
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高英哲(Kao Ying-Jer)
dc.contributor.authorTa Koen
dc.contributor.author柯達zh_TW
dc.date.accessioned2021-06-15T04:54:28Z-
dc.date.available2010-08-03
dc.date.copyright2010-08-03
dc.date.issued2010
dc.date.submitted2010-07-30
dc.identifier.citationBibliography
[1] H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).
[2] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63
(2001).
[3] H.D. Yang, J.Y. Lin, H.H. Li, F.H. Hsu, C.J. Liu, S.C. Li, R.C. Yu, and C.Q. Jin, Phys.
Rev. Lett. 87, 167003 (2001).
[4] M. Zehetmayer, M. Eisterer, J. Jun, S.M. Kazakov, J. Karpinski, A. Wisniewski, and H
W. Weber, Phys. Rev. B 66, 052505 (2002).
[5] A.V. Sologubenko, J. Jun, S.M. Kazakov, J. Karpinski, and H.R. Ott, Phys. Rev. B 66,
014504 (2002).
[6] M. Iavarone, G. Karapetrov, A.E. Koshelev, W.K. Kwok, G W. Crabtree, D.G. Hinks,
W.N. Kang, E.M. Choi, H.J. Kim, H.J. Kim, and S.I. Lee, Phys. Rev. Lett. 89, 187002
(2002).
[7] Y. Kong, O.V. Dolgov, O. Jepsen, and O.K. Andersen, Phys. Rev. B 64, 020501 (2001).
[8] J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, and L.L. Boyer, Phys. Rev. Lett.
86, 4656 (2001).
[9] A.Y. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).
[10] R. Osborn, E.A. Goremychkin, A.I. Kolesnikov, and D.G. Hinks, Phys. Rev. Lett. 87,
017005 (2001).
[11] H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, and S.G. Louie, Phys. Rev. B 66, 020513
(2002).
61
[12] H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, and S.G. Louie, Nature 418, 758 (2002).
[13] M.E. Zhitomirsky and V.H. Dao., Phys. Rev. B 69, 054508 (2004).
[14] E.J. Nicol and J.P. Carbotte, Phys. Rev. B 71, 054501 (2005).
[15] H.J. Choi, M.L. Cohen, and S.G. Louie, Phys. Rev. B 73, 104520 (2006).
[16] M. Angst and R. Puzniak, cond-mat/03.
[17] S.L. Bud′ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, and P.C. Canfield,
Phys. Rev. Lett. 86, 1877 (2001).
[18] J.A. Wilson, F.J. Di Salvo, and S. Mahajan, Phys. Rev. Lett. 32, 882 (1974)
[19] B.T. Matthias, T.H. Geballe, and V.B. Compton, Rev. Mod. Phys. 35, 1 (1963).
[20] D. Sanchez, A. Junod, J. Muller, H. Berger, and F. Levy, Physica(Amsterdam) B 204,
167 (1995).
[21] K. Rossnagel, O. Seifarth, L. Kipp, M. Skibowski, D. Vos, P. Kruger, A. Mazur, and J.
Pollmann, Phys. Rev. B 64, 235119 (2001).
[22] J.G. Rodrigo and S. Vieira, Physica C 404, 306 (2004).
[23] T. Valla, A.V. Fedorov, P.D. Johnson, P.A. Glans, C. McGuinness, K.E. Smith, E.Y.
Andrei, and H. Berger, Phys. Rev. Lett. 92,086401 (2004).
[24] F.D. Callaghan, M. Laulajainen, C.V. Kaiser, and J.E. Sonier, Phys. Rev. Lett. 95, 197001
(2005).
[25] M.D. Johannes, I.I. Mazin, and C.A. Howells, Phys. Rev. B 73, 205102 (2006).
[26] C.L. Huang, J.Y. Lin, Y.T. Chang, C.P. Sun, H.Y. Shen, C.C. Chou, H. Berger, T.K. Lee,
and H.D. Yang, Phys. Rev. B 76, 212504 (2007).
[27] I. Guillamon, H. Suderow, F. Guinea, and S. Vieira, Phys. Rev. B 77, 134505 (2008).
[28] S.V. Borisenko, A.A. Kordyuk, V.B. Zabolotnyy, D.S. Inosov, D. Evtushinsky, B. Buchner,
A.N. Yaresko, A. Varykhalov, R. Follath, W. Eberhardt, L. Patthey and H. Berger, Phys.
Rev. Lett. 102, 166402 (2009).
62
[29] T. Yokoya, T. Kiss, A. Chainani, S. Shin, M. Nohara, and H. Takagi, Science, 294, 2518
(2001).
[30] T. Kiss, T. Yokoya, A. Chainani, S. Shin, T. Hanaguri, M. Nohara, and H. Takagi, Nat.
Phys. 3, 720 (2007).
[31] A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems, (Dover, New
York, 2003).
[32] G. Eilenberger, Z. Phys. 214, 195 (1958).
[33] M. Ichioka, A. Hasegawa, and K. Machida, Phys. Rev. B 59, 184 (1999).
[34] M. Ichioka, K. Machida, N. Nakai, and P. Miranovic , Phys. Rev. B 70,144508 (2004).
[35] M. Marezio, P. D. Dernier, A. Menth, and G. W. Hull, Journal of Solid State Chemistry,
4, 425 (1972).
[36] R. Corcoran, P. Meeson, Y. Onuki, P.A. Probst, M. Springford, K. Takita, H. Harima,
G.Y. Guo, and B.L. Gyorffy, J. Condens. Matter 6,4479 (1994).
[37] D.E. Moncton, J.D. Axe, and F.J. DiSalvo, Phys. Rev. Lett. 34, 734 (1975).
[38] I. Guillamon, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodiere, Phys. Rev. Lett.
101, 166407 (2008).
[39] W.C. Tonjes, V.A. Greanya, R. Liu, C.G. Olson, and P. Molinie, Phys. Rev. B 63, 235101
(2001).
[40] K. Rossnagel, E. Rotenberg, H. Koh, N.V. Smith, and L. Kipp, Phys. Rev. B 72, 121103
(2005).
[41] Th. Straub, Th. Finteis, R. Claessen, P. Steiner, S. Hufner, P. Blaha, C.S. Oglesby, and
E. Bucher, Phys. Rev. Lett. 82, 4504 (1999).
[42] D.S. Inosov, V.B. Zabolotnyy, D.V. Evtushinsky, A.A. Kordyuk, B. Buchner, R. Follath,
H. Berger, and S.V. Borisenko, New J. Phys. 10, 125027 (2008)
[43] D.W. Shen, Y. Zhang, L.X. Yang, J. Wei, H.W. Ou, J.K. Dong, B.P. Xie, C. He, J.F.
Zhao, B. Zhou, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, J. Shi, and D.L.
Feng, Phys. Rev. Lett. 101, 226406 (2008).
63
[44] T.M. Rice and G.K. Scott, Phys. Rev. Lett. 35, 120 (1975).
[45] E. Boaknin, M.A. Tanatar, J. Paglione, D. Hawthorn, F. Ronning, R.W. Hill, M. Sutherland,
L. Taillefer, J. Sonier, S.M. Hayden, and J.W. Brill, Phys. Rev. Lett. 90, 117003
(2003).
[46] J.D. Fletcher, A. Carrington, P. Diener, P. Rodiere, J.P. Brison, R. Prozorov, T. Olheiser
and R.W. Giannetta, Phys. Rev. Lett. 98, 057003 (2007).
[47] R. Joynt, Phys. Rev. B 41,4271 (1990).
[48] M. Tinkham, Introduction to superconductivity, (Dover, New York, 2004).
[49] J.E. Sonier, F.D. Callaghan, R.I. Miller, E. Boaknin, L. Taillefer, R.F. Kiefl, J.H. Brewer,
K.F. Poon, and J.D. Brewer, Phys. Rev. Lett. 93, 017002 (2004).
[50] V.G. Kogan, C. Martin, and R. Prozorov, Phys. Rev. B 80, 014507 (2009).
[51] W.H. Press, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes: The Art of scienti c
Computing (Cambridge University Press, Cambridge, England, 2007).
[52] V.G. Kogan, Phys. Rev. B 66, 020509 (2002).
[53] F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, J. D. Jorgensen, A. Junod, and N. E.
Phillips, Europhys. Lett. 56, 856 (2001).
[54] L.N. Bulaevskii, O.V. Dolgov, and M.O. Ptitsyn, Phys. Rev. B 38, 11290 (1988).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46116-
dc.description.abstractNbSe2 has been recognized as a multiband superconductor recently by many experiments, including
the reported Fermi-sheet-dependent superconductivity in angle-resolved photoemission
spectroscopy, thus strongly suggesting the multiband nature in NbSe2. It appears that a second
energy gap involved can give a plausible explanation for previous experiments. Viewing NbSe2
as a two-gap superconductor, we proposed two possible scenarios to investigate how to locate
the large gap and the small gap on the three bands in NbSe2. The two-gap Ginzburg-Landau
theory is used to calculate the upper critical field and the corresponding gap ratio near Tc. Also,
we apply the two-band Eilenberger equations and the two-gap BCS theory to calculate the superfluid
density and the specific heat. The obtained results are fitted to previous experimental
data, and it appears that the more plausible scenario is to respectively locate the large gap
and the small gap on Nb-derived antibonding band and the Nb-derived bonding band. While
previous studies have suggested that the Se-derived band serves as the isotropic small gap, we
exclude such role of the Se-derived band for two reasons. One is its bad fit to the superfluid
density, and the other is that the gap ratio obtained in the fit to Hc2(ab) is inconsistent with
previous ARPES studies. Additionally, we discuss how the upper critical field is affected by
the intraband Fermi-velocity anisotropy, interband Fermi-velocity anisotropy, density of states,
interband coupling and the transition temperature of the large gap.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:54:28Z (GMT). No. of bitstreams: 1
ntu-99-R97222044-1.pdf: 2337236 bytes, checksum: b323712751c081699a6856265756f3de (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAbstract i
1 Introduction 1
1.1 Two-gap superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 MgB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 NbSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 The BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Ginzburg-Landau theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Eilenberger quasiclassical equations . . . . . . . . . . . . . . . . . . . . . 7
2 Two-gap Superconductivity in NbSe2 9
2.1 Electronic structure of NbSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Charge density wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Experimental aspect of two-gap superconductivity in NbSe2 . . . . . . . . . . . 11
2.3.1 Upper critical field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Penetration depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Heat conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Muon-spin rotation measurement . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Specific heat and Sommerfeld coefficient . . . . . . . . . . . . . . . . . . 15
2.3.6 High resolution photoemission . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.7 Angle-resolved photoemission spectroscopy . . . . . . . . . . . . . . . . 17
2.3.8 Scanning tunnelling microscopy/spectroscopy . . . . . . . . . . . . . . . 19
2.4 Brief summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 The Two-gap BCS Theory 23
3.1 Single-gap BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Extension to the two-gap BCS theory . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 More than one species of Cooper-pairs . . . . . . . . . . . . . . . . . . . 24
3.2.2 Modelling two-gap superconductivity . . . . . . . . . . . . . . . . . . . . 25
3.2.2.1 Two-gap BCS model . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Two-band Eilenberger equations . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Thermodynamic properties . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4.1 Superfluid density ρ(T) . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4.2 Specific heat Cv(T) . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 31
4 Two-gap Ginzburg-Landau Theory 37
4.1 Single-gap Ginzurg-Landau theory . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1 General free energy functional . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Coherence length and penetration depth . . . . . . . . . . . . . . . . . . 39
4.1.3 Upper critical field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.4 Derivation from Gorkov’s equations . . . . . . . . . . . . . . . . . . . . 43
4.2 Extension to two-Gap Ginzburg-Landau theory . . . . . . . . . . . . . . . . . . 43
4.2.1 Free energy functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Ginzburg-Landau equations . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Upper critical field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Toy band model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4.1 Interband anisotropy . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.4.2 Intraband anisotropy . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.4.3 Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.4.4 Interband coupling . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.4.5 Transition temperature of the large gap . . . . . . . . . . . . . 54
4.2.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Summary 58
6 Acknowledgements 60
Bibliography 61
dc.language.isoen
dc.subject較高臨界場zh_TW
dc.subject鈮化砷zh_TW
dc.subject雙能隙zh_TW
dc.subject超流體密度zh_TW
dc.subject硼化錳zh_TW
dc.subjectupper critical fielden
dc.subjecttwo-gapen
dc.subjectGinzburg-Landau theoryen
dc.subjectEilenberger equationen
dc.subjectNbSe2en
dc.subjectMgB2en
dc.subjectSuperfluid densityen
dc.title對雙能隙超導體砷化鈮的理論研究zh_TW
dc.titleTheoretical Study on NbSe2 as a Two-gap Superconductoren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡崇德,林俊源,吳文欽
dc.subject.keyword鈮化砷,雙能隙,硼化錳,超流體密度,較高臨界場,zh_TW
dc.subject.keywordtwo-gap,Ginzburg-Landau theory,Eilenberger equation,NbSe2,MgB2,Superfluid density,upper critical field,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2010-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved