Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4609
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧虎生
dc.contributor.authorHung-Ju Chenen
dc.contributor.author陳泓如zh_TW
dc.date.accessioned2021-05-14T17:44:04Z-
dc.date.available2021-02-15
dc.date.available2021-05-14T17:44:04Z-
dc.date.copyright2016-02-15
dc.date.issued2015
dc.date.submitted2015-11-24
dc.identifier.citation王明新,夏訓鋒,劉建國,柴育紅,雷春生.2009.太湖地區高產水稻生命週期評價.農業環境科學學報.28(2):420-424.
吳以健,楊志維,盧虎生.2013.稻作環境親和栽培之環境影響評估.臺中區農業改良場特刊119:85-98.
吳以健.2009.溫度環境與水稻穀粒產量及品質之相關性.碩士論文.國立台灣大學農藝學系.台北,台灣.
姚銘輝,陳守泓,陳述.2006.台灣水稻田溫室氣體排放之估算研究.台灣農業研究.55(4):280-293.
柯光瑞.2005.台灣北部現行耕作制度對農田土壤溫室氣體(CO2、CH4、N2O)釋出之影響.碩士論文.國立台灣大學農業化學系.台北,台灣.
孫志鴻,賴朝明.1998.畜牧溫室氣體測定講習會論文暨講義集。國立臺灣大學校總區農化館農藝館.台北,台灣.
張嘯林,潘曉健,熊正琴,王金陽,楊波,劉英烈,劉平麗.2013.應用DNDC模型分析管理措施對稻麥輪作系統CH4和N2O綜合溫室效應的影響.應用生態學報.24(3):690-696.
陳筱鈞.2013.台灣不同栽培區氣象因子與小麥品質之相關性研究.碩士論文.國立台灣大學農藝學系.台北,台灣.
溫清光,張智華.2008.台灣農業非點源汙染.農業非點源污染研討會論文集.行政院農業委員會農業試驗所,中華土壤肥料學會.23-40.
潘瀅如.2008.台灣地區稻米生產之生命週期評估.碩士論文.國立台北大學自然資源與環境管理研究所.台北,台灣.
蕭聖哲.2014.不同土地利用型態與模擬增加氮沉降對溪頭地區土壤溫室氣體通量之影響.碩士論文.國立台灣大學森林環境暨資源學系.台北,台灣.
謝華偉,蔡岳峻,謝清祿.2007.台灣主要汽油類農業機械耗油量調查分析.農業機械學刊.16(1):1-14.
Arshad, M.A., K.S. Gill and R.C. Izaurralde. 1998. Wheat production, weed population and soil properties subsequent to 20 years of sod as affected by crop rotation and tillage. Journal of Sustainable Agriculture 12: 131-154.
Aulakh, M.S., T.S. Khera and J.W. Doran. 2000. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil I. effect of nitrate and ammoniacal nitrogen. Biology and Fertility of soils 31: 162-167.
Aulakh, M.S., T.S. Khera, J.W. Doran and K.F. Bronson. 2001. Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Biology and Fertility of Soils 34: 375-389.
Blengini, G.A. and M. Busto. 2009. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of environmental management 90: 1512-1522.
Brentrup, F., J. Küsters, H. Kuhlmann and J. Lammel. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology. European Journal of Agronomy 20: 247-264.
Bullock, D.G. 1992. Crop rotation. Critical Reviews in Plant Sciences 11: 309-326.
Cai, Z., T. Sawamoto, C. Li, G. Kang, J. Boonjawat, A. Mosier, et al. 2003. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Global Biogeochemical Cycles 17(4), 1107.
Chen, C.L., C.H. Cheng, C.Y. Liao, T.Y. Ho, P.Y. Wu, J.L. Tsai, et al. 2013. Impact of fertilization on greenhouse gases emission and its mitigation. Strategic Approach to Integrate Practical Technologies for Climate-Smart Crop Production. Taiwan Agricultural Research Institute (TARI)/Food and Fertilizer Technology Center (FFTC), Taichung, Taiwan
Farooq, M., H. Bramley, J.A. Palta and K.H.M. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences 30: 491-507.
Food and Agriculture Organization of the United Nations. Executive Summary In: Climate-Smart Agriculture Sourcebook 2013.FAO, Rome.
Fumoto, T., K. Kobayashi, C. Li, K. Yagi and T. Hasegawa. 2007. Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change Biology 14: 382-402.
Gornall, J., R. Betts, E. Burke, R. Clark, J. Camp, K. Willett, et al. 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society of London Biological Science 365: 2973-2989.
Greenhut, R.F., R. Dufour, A.M. Kendall, E.B. Strong and K.L. Steenwerth. 2013. Life cycle assessment in agricultural systems.24.
Hatfield, J.L., K.J. Boote, B.A. Kimball, L.H. Ziska, R.C. Izaurralde, D. Ort, et al. 2011. Climate impacts on griculture: implications for crop production. Agronomy Journal 103: 351.
Hokazono, S. and K. Hayashi. 2012. Variability in environmental impacts during conversion from conventional to organic farming: a comparison among three rice production systems in Japan. Journal of Cleaner Production 28: 101-112.
IPCC. 2007. Climate Change 2007: Synthesis report. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Geneva, Switzerland.
IPCC. 2007. Climate Change 2007: Mitigation.Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeCambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Kasmaprapruet, S., W. Paengjuntuek, P. Saikhwan and H. Phungrassami. 2009. Life cycle assessment of milled rice production: case study in Thailand. European Journal of Scientific Research 30: 195-203.
Katayanagi, N., Y. Furukawa, T. Fumoto and Y. Hosen. 2012. Validation of the DNDC-Rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Science and Plant Nutrition 58: 360-372.
Li, C., S. Frolking, G.J. Crocker, P.R. Grace, J. Klír, M. Körchens, et al. 1997. Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma 81: 45-60.
Li, C., S. Frolking and R. Harriss. 1994. Modeling carbon biogeochemistry in agricultural soils. Global biogeochemical cycles 8: 237-254.
Linquist, B., K.J. Groenigen, M.A. Adviento-Borbe, C. Pittelkow and C. Kessel. 2012. An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology 18: 194-209.
Lipper, L., P. Thornton, B.M. Campbell, T. Baedeker, A. Braimoh, M. Bwalya, et al. 2014. Climate-smart agriculture for food security. Nature Climate Change 4: 1068-1072. doi:10.1038/nclimate2437.
Lobell, D.B. and S.M. Gourdji. 2012. The influence of climate change on global crop productivity. Plant physiology 160: 1686-1697.
Lv, Y., S.Z. Gu and D.M. Guo. 2010. Valuing environmental externalities from rice–wheat farming in the lower reaches of the Yangtze River. Ecological Economics 69: 1436-1442.
Ma, Y.C., X.W. Kong, B. Yang, X.L. Zhang, X.Y. Yan, J.C. Yang, et al. 2013. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agriculture, Ecosystems and Environment 164: 209-219.
Matson, P.A. 1998. Integration of environmental, agronomic, and economic aspects of fertilizer Management. Science 280: 112-115.
Meisterling, K., C. Samaras and V. Schweizer. 2009. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. Journal of Cleaner Production 17: 222-230.
Ortiz-Monasterio, I., R. Wassmann, B. Govaerts, Y. Hosen, N. Katayanagi and N. Verhulst. 2010. Greenhouse gas mitigation in the main cereal systems: rice, wheat, and maize. In: M. P. Reynolds, editor Climate Change and Crop Production. pp. 151-176.
Ortiz, R., K.D. Sayre, B. Govaerts, R. Gupta, G.V. Subbarao, T. Ban, et al. 2008. Climate change: can wheat beat the heat? Agriculture, Ecosystems and Environment 126: 46-58.
Saharawat, Y.S., B. Singh, R.K. Malik, J.K. Ladha, M. Gathala, M.L. Jat, et al. 2010. Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. Field Crops Research 116: 260-267.
Sander, B.O. and R. Wassmann. 2014. Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenhouse Gas Measurement and Management 4: 1-13.
Sapkota, T., M. Rai, L. Singh, M. Gathala, M. Jat, J. Sutaliya, et al. 2014. Greenhouse gas measurement from smallholder production systems:guidelines for static chamber method. CIMMYT, New Delhi, India.
Smith, K., T. Ball, F. Conen, K. Dobbie, J. Massheder and A. Rey. 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science 54: 779-791.
Subash, N., B. Gangwar, S. Singh, A.K. Koshal and V. Kumar. 2014. Long-term yield variability and detection of site-specific climate-smart nutrient management practices for rice–wheat systems: an empirical approach. The Journal of Agricultural Science 152: 575-601.
Tubiello, F.N., M. Salvatore, S. Rossi, A. Ferrara, N. Fitton and P. Smith. 2013. The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters 8: 015009.
Verhulst, N., B. Govaerts, E. Verachtert, A. Castellanos-Navarrete, M. Mezzalama, P. Wall, et al. 2010. Conservation agriculture, improving soil quality for sustainable production systems. In: R. Lal and B. A. Stewart, editors, Advances in Soil Science: Food Security and Soil Quality CRC Press, Boca Raton. p. 137-208.
Wang, C., X. Li, T. Gong and H. Zhang. 2014. Life cycle assessment of wheat-maize rotation system emphasizing high crop yield and high resource use efficiency in Quzhou County. Journal of Cleaner Production 68: 56-63.
Wassmann, R., H. Neue, J. Ladha and M. Aulakh. 2004. Mitigating greenhouse gas emissions from rice-wheat cropping systems in Asia. Tropical Agriculture in Transition—Opportunities for Mitigating Greenhouse Gas Emissions? Springer. p. 65-90.
Yan, X., H. Akimoto and T. Ohara. 2003. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Global Change Biology 9: 1080-1096.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4609-
dc.description.abstract在氣候變遷下,全球糧食生產皆可能受到巨大衝擊,而台灣糧食自給率僅有33%,過度依賴各種進口穀類使台灣糧食安全受到威脅。其中,農業佔全球10%溫室氣體排放量,為減緩農業所造成之環境衝擊及增加台灣糧食自給率,稻麥輪作為一個可行的栽培模式之一,但在台灣稻麥輪作的環境衝擊並不清楚,因此本試驗利用生命週期評估(Life Cycle Assessment, LCA)技術,對整體稻麥輪作系統進行生命週期熱點分析及評估,並利用兼具'調適(Adaptation)”與'減輕(Mitigation)'的氣候智慧型農業(Climate Smart Agriculture)概念進行改善,以期建立本土氣候智慧型稻麥輪作栽培系統。
本試驗選用台中區農業改良場與台中大雅為試驗地點,進行一年三作之 稻-稻-麥 輪作栽培之生命週期分析,其中分析的系統邊界包含整地、育苗、灌溉、田間操作及收穫後加工等,最終以單位面積及單位重量白米與小麥榖粒評估各式環境衝擊,如溫室效應潛勢、優養化及酸化等。結果顯示,主要的環境衝擊皆來自於田間釋放,其總差異可高達50%,以每期作而言,碳足跡介於3~53 tg CO2 eq /ha;以單位糧食生產而言(單位:kg CO2 eq / kg white rice;單位:kg CO2 eq / kg wheat grain),稻麥輪作生產過程中的碳足跡介於1.3~10,雖然田間排放為主要熱點,但可藉由不同農業操作進行改善,以本試驗結果而言,肥料管理為最有效之方法,而其他整地調整與二期休耕等操作雖然在本試驗評估中沒有一致的效果,但在其他長期研究中仍有一定程度的改善。因此低整地、精準施肥的稻麥輪作為台灣可發展的氣候智慧型稻麥輪作系統。
zh_TW
dc.description.abstractFood security is an important issue for all countries around the world, especially when food production has been challenged under climate change. The food self-sufficiency ratio of Taiwan is around only 33 % weighted by energy in 2013, with importing excessive cereal grains as a serious threat to Taiwan. Also, there is about 10 % artificially greenhouse gas emission generating from agriculture production. Therefore, it is suggested to mitigate the environmental impacts from agriculture production system and increase the degree of food self-sufficiency ratio of Taiwan. Rice-wheat rotation is a possible innovative cropping system for Taiwan, which integrate with the upland-lowland rotation, wheat production and labor saving. In the present study the analysis of environmental impacts of rice-wheat rotation system was performed by the tool of life cycle assessment and hot spots of the impacts for the cropping system were determined. This study is aim to establish a local climate-smart cropping system which is high yield, high quality, energy saving, food production and eco-friendly.
In the study, a two-year rice-wheat rotation experiments at TDARES (Taichung District Agriculture Research and Extension Station) and Daya (Taichung) since 2012 winter was conducted. The system boundary of life cycle assessment consisted of production of farm inputs (such as fertilizer, pesticide and seed), tillage, irrigation, farming practice and post-harvesting, and used the function unit as kg grain and per hectare in evaluating the environment impacts from crop production. In this study we selected energy consumption, global warming potential, acidification, and eutrophication as environmental impact items to evaluate rice-wheat system. According to the research results, the main environment impact came from field emission and the variation was up to 50 %. In each crop, the GWP (Global warming potential) was 3~53 tg CO2 eq /ha and 1.3~10 kg CO2 eq/ kg grain. Although field emission was the main hot-spot, it still could be improved by modified fertilizer management. In this study, fertilizer adjustment was the most effective way to mitigate the field emission, while other adjusted strategies such as tillage and second crop period fallow didn’t show consistent mitigation effects. But there is still some positive effect of non-tillage and changing crop residue retention ratio has been confirmed in several long-term field research.
In all, minimum tillage and suitable fertilizer management seemed to be the suitable practice for establishing climate-smart rice-wheat rotation system.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:44:04Z (GMT). No. of bitstreams: 1
ntu-104-R02621103-1.pdf: 2713852 bytes, checksum: afc10d9e5cfdc7000d6360605c3d4a0f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
致謝 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 IX
縮寫字簡表 X
壹、 試驗背景與目的 1
貳、 前人研究 3
一、 氣候變遷與糧食生產之風險 3
二、 糧食生產所造成之環境衝擊 3
三、 改善糧食生產對環境衝擊的可能方法 6
四、 台灣水稻小麥生產現況 8
五、 稻麥輪作的發展 10
六、 台灣水稻生產之環境衝擊 10
參、 試驗推論 12
肆、 材料方法 13
一、 試驗地區 13
二、 生命週期評估之方法 14
三、 調查項目 19
四、 田間排放之系統模擬 (DNDC) 22
五、 田間溫室氣體採樣及分析 27
伍、 結果 30
一、 試驗田區土壤及氣象資料 30
二、 水稻與小麥之植株分配比及碳氮比 30
三、 試驗田區之栽培曆 34
四、 試驗模擬產量與實際產量之比較 37
五、 DNDC模擬田間溫室氣體排放 37
六、 稻麥輪作之生命週期評估 43
七、 改善操作之稻麥輪作生命週期 60
陸、 討論 66
一、 DNDC模擬情況 66
二、 大雅與台中場稻麥輪作之環境衝擊差異 67
三、 台灣稻麥輪作與其他耕作系統之比較 68
四、 改善稻麥輪作之可能操作 69
五、 台灣一年兩作稻麥輪作之可行性 71
六、 其他田間栽培現況 72
柒、 總結與未來展望 73
捌、 文獻 74
dc.language.isozh-TW
dc.subject碳足跡zh_TW
dc.subject稻麥輪作zh_TW
dc.subject氣候智慧型zh_TW
dc.subject生命週期評估zh_TW
dc.subjectDNDCzh_TW
dc.subjectClimate-smart agricultureen
dc.subjectCarbon footprinten
dc.subjectDenitrification Decomposition (DNDC)en
dc.subjectRice-Wheat rotationen
dc.subjectLife cycle assessment (LCA)en
dc.title氣候智慧型稻麥輪作之建立zh_TW
dc.titleEstablishment of Climate-smart Rice-Wheat Rotation Cropping systemen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee朱鈞,陳宗禮,羅正宗,鄭智馨
dc.subject.keyword稻麥輪作,氣候智慧型,生命週期評估,DNDC,碳足跡,zh_TW
dc.subject.keywordRice-Wheat rotation,Life cycle assessment (LCA),Climate-smart agriculture,Denitrification Decomposition (DNDC),Carbon footprint,en
dc.relation.page82
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-11-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf2.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved