請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46057完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林太家(Tai-Chia Lin) | |
| dc.contributor.author | Chiun-Chang Lee | en |
| dc.contributor.author | 李俊璋 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:52:36Z | - |
| dc.date.available | 2012-08-04 | |
| dc.date.copyright | 2010-08-04 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-30 | |
| dc.identifier.citation | [1] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle: Observation of Vortex Lattices in Bose-Einstein Condensates, Science Vol. 292, 476-479 (2001).
[2] R. Agemi: The initial boundary value problem for inviscid barotropic fluid motion. Hokkaido Math. J. 10, 156-182 (1981). [3] H. Beir˜ao da Veiga: On an Euler type equation in hydrodynamics. Ann. Mat. Pura Appl. 125 , 279-294 (1980). [4] H. Beir˜ao da Veiga: On the barotropic motion of compressible perfect fluids.Ann. Sc. Norm. Sup. Pisa 8, 417-451 (1981). [5] J.P. Bourguignon, H. Brezis: Remarks on the Euler equation. J. Functional Analysis 15, 341-363 (1974). [6] H. Brezis , T. Gallou¨et: Nonlinear Schr¨odinger evolution equations. Nonlinear Analysis, TMA4, 677-681 (1980). [7] M. Edwards, C. W. Clark, P. Pedri, L. Pitaevskii, and S. Stringari: Consequence of Superfluidity on the Expansion of a Rotating Bose-Einstein Condensate, Phys. Rev. Lett. 88, 070405(1-4), 2002. [8] D. Gilbarg, N. Trudinger: Elliptic partial differential equations of second order. Berlin: Springer, 1983. [9] V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksperim. Theor. Fys. 34 1240(1958) [Sov. Phys. JETP, 7 858(1958).] [10] M. Ghil and S. Childress, Topics in geophysical fluid dynamics: atmospheric dynamics, dynamo theory, and climate dynamics, Springer-Verlag, New York, 1987. [11] H. P. Greenspan: The theory of rotating fluids, Cambridge at the university press, 1969. [12] E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc. 126 (1998), 523-530. [13] Z. R. Hasan and D. F. Goble, Effect of boundary conditions on finite Bose-Einstein assemblies, Phys. Rev. A 10 no. 2 (1974), 618-624. [14] G. Hechenblaikner, E. Hodby, S.A. Hopkins, O. M. Marago, and C. J. Foot: Direct Observation of Irrotational Flow and Evidence of Superfluidity in a Rotating Bose-Einstein Condensate, Phys. Rev. Lett. 88, 070406(1-4), 2002. [15] T.L. Ho: Bose-Einstein Condensates with Large Number of Vortices, Phys.Rev.Lett. 87, 060403(1-4), 2001. [16] D. Z. Jin and D. H. E. Dubin, Characteristics of Two-Dimensional Turbulence That Self-Organizes into Vortex Crystals, Phys. Rev. Lett., 84, 1443-1446, 2000. [17] S. Jin, X. Li, Multi-phase computations of the semiclassical limit of the Schrodinger equation and related problems: Whitham vs Wigner, Physica D 182, (2003) 46-85. [18] Kenichi Kasamatsu, Makoto Tsubota, and Masahito Ueda: Vortex Phase Diagram in Rotating Two-Component Bose-Einstein Condensates, Phys.Rev.Lett. 91, 150406(1-4), 2003. [19] T. Kato: On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Rational Mech. Anal., 25, 188–200 (1967). [20] T. Kato: Perturbation theory of linear operator. Berlin: Springer, 1980. [21] F.H. Lin, P. Zhang: Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain. Arch. Rat. Mech. Anal. 179, 79-107 (2005). [22] T.C. Lin, P. Zhang: Incompressible and Comppressible Limits of Coupled Systems of Nonlinear Schrödinger Equations, Commun. Math. Phys. 266, 547–569 (2006). [23] C. Lobo, A. Sinatra, and Y. Castin, Vortex Lattice Formation in Bose-Einstein Condensates, Phys. Rev. Lett. 92, 020403(1-4), 2004. [24] A.Majda, Compressible fluid flow and systems of conservation laws in several space variables, Springer, New York 1984. [25] A.J. Majda, A.L. Bertozzi: Vorticity and incompressible flow. Cambridge University Press, Cambridge, 2002. [26] E. J. Mueller and T.L. Ho: Two-Component Bose-Einstein Condensates with a Large Number of Vortices, Phys.Rev.Lett., 88, 180403, 2002. [27] M. Oliver: Classical solutions for a generalized Euler equation in two dimensions. J. Math. Anal. Appl. 215 (1997), 471–484. [28] A. Pazy: Semigroups of linear operators and applications to partial differential equations, Springer, 1983. [29] J. Pedlosky, Geophysical fluid dynamics, Springer Verlag, Berlin, 1992. [30] M. Puel, Convergence of the Schr¨odinger-Poisson system to the incompressible Euler equations, Comm. Partial Diff. Equations, 27(2002), 2311-2331. [31] L.Pitaevskii and S. Stringari, Bose-Einstein condensation, Oxford 2003. [32] V. M. P´erez-Garc´ıa, V. V. Konotop and V. A. Brazhnyi, Feshbach resonance induced shock waves in Bose-Einstein condensates, Phys. Rev. Lett., 92 (2004), 220403(1-4). [33] J. Rauch, F. Massery: Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Am. Math. Soc. 189, 303–318 (1974). [34] I. Segal: Nonlinear semi-groups. Ann. Math. 78, 339–364 (1963). [35] J. Serrin: On the uniqueness of compressible fluid motions. Arch. Rational Mech. Anal., 3,271-288 (1959). [36] T. P. Simula, P. Engels, I. Coddington, V. Schweikhard, E. A. Cornell, and R. J. Ballagh, Observations on Sound Propagation in Rapidly Rotating Bose-Einstein Condensates, Phys. Rev. Lett., 94, 080404(1-4), 2005. [37] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University press, Princeton, New Jersy, 1970. [38] E. P. Wigner, On the quantum correction for the thermodynamic equilibrium, Phys. Rev. 40 (1932) 749-759. [39] Ping Zhang, Wigner measure and the semiclassical limit of Schrodinger-Poisson equations, SIAM J. Math. Anal., 34 (2003), 700-718. [40] V. Barcilon, D. P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane channels: part II, SIAM J. APPL. MATH. Vol.52, No.5, pp.1405–1425 (1992). [41] V. Barcilon, D. P. Chen, R. S. Eisenberg, and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study, SIAM J. APPL. MATH. Vol.57, No.3, pp.631–648 (1997). [42] P. Grochowski and J. Trylska, Continuum molecular electrostatics, salt effects and counterion binding a review of the Poisson-Boltzmann model and its modifications, Biopolymers 89 93-113 (2008). [43] B. Hille, Ion channels of excitable membranes, 3rd Edition, Sinauer Associates, Inc. (2001). [44] B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes, Nonlinearity 22 (2009) 811-833. [45] B. Li, Minimization of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent, SIAM J. Math. Anal. (2009) Vol.40, No. 6, pp.2536–2566 [46] W. Liu, Geometric singular perturbation approach to steady-state poissonnernst-planck systems, SIAM J. Appl. Math. (2005) Vol.65. No.3, pp.754–766. [47] D.G. Luchinsky, R. Tindjong, I. Kaufman, P.V.E. McClintock and R.S. Eisenberg, Ion channels as electrostatic amplifiers of charge fluctuations, Journal of Physics: Conference Series 142 (2008) 012049(1-9). [48] J. E. Marsden and A. J. Chorin, A Mathematical Introduction To Fluid Mechanics, Springer (1993). [49] J. H. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study, SIAM J. APPL. MATH. Vol.57, No.3, pp.609–630 (1997). [50] M. F. Schumaker and C. J. Kentler, Far-Field Analysis of Coupled Bulk and Boundary Layer Diffusion Toward an Ion Channel Entrance, Biophysical Journal Vol.74, pp.2235–2248 (1998). [51] Y. Mori, J.W. Jerome, and C.S. Peskin, A Three-dimensional Model of Cellular Electrical Activity, Bulletin of the Institute of Mathematics Academia Sinica, 2(2)(2007), pp.367–390. [52] Y. Mori, A Three-Dimensional Model of Cellular Electrical Activity, PhD thesis, New York University, (2007). [53] Y. Hyon, R. Eisenberg, C. Liu, and Y. Mori, A Mathematical Model For Electrical Activity in Cell Membrane: Energetic Variational Approach, in preparation, (2007). [54] A. L. Hodgkin, and A. F. Huxley, A Qualitative Description of the Membrane Current and Its Application to Conduction and Excitation in Nerve, J. Physiology, 117(1952), pp.500–544. [55] J. P. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, 1998. [56] C. Koch, Biophysics of Computation, Oxford University Press, New York, 1999. [57] P. J. Rabier and W. C. Rheinbolt, Theoretical and Numerical Analysis of Differential-algebraic Equations, volume VIII of Handbook of Numerical Analysis, pp.183–540, North-Holland, 2002. [58] S. Carl, and J. Jerome, Trapping Region for Discontinuous Quasilinear Elliptic Systems of Mixed Monotone Type, Nonlinear Anal., 51(2002), pp.843–863. [59] B. Hille, Ion Channels of Excitable Membranes, 3rd edition, Sinauer Associates, 2001. [60] D. J. Aidley, The Physiology of Excitable Cells, 4th edition, Cambridge University Press, New York, 1998. [61] J. Zhang, X. Gong, C. Liu, W. Wen, and P. Sheng, Electrorheological Fluid Dynamics, PRL, 101(2008), pp.194503-1–194503-4. [62] B. Eisenberg, Ionic Channels in Biological Membranes: Natural Nanotubes, Acc. Chem. Res., 31(1998), pp.117–123. [63] W. Nonner, D. P. Chen, and B. Eisenberg, Progress and Prospects in Permeation, J. Gen. Physiol., 113(1999), pp.773–782. [64] P. A. Marcowich, The Stationary Seminconductor Device Equations, Springer-Verlag, Vienna, 1986. [65] O. J. Riveros, T. L. Croxton, and W. M. Armstrong, Liquid Junction Potentials Calculated From Numerical Solutions of the Nernst-Planck and Poisson Equations, J. Theor. Biol., 140(1989), pp.221–230. [66] Y. Hyon, D. Y. Kwak and C. Liu, Energetic Variational Approach in Complex Fluids : Maximum Dissipation Principle, DCDS-A, 2009, Accepted. [67] F. Andrietti, A. Peres and R. Pezzotta: Exact solution of the unidimensional Poisson-Boltzmann equation for a 1:2 (2:1) electrolyte, Biophys J. 9:1121-4 (1976). [68] V. Barcilon, D. P. Chen, R. S. Eisenberg, and J. W. Jerome: Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study, SIAM J. APPL. MATH. Vol. 57, No. 3, pp. 631-648 (1997). [69] V. Barcilon, D. P. Chen, and R. S. Eisenberg: Ion flow through narrow membrane channels: part II, SIAM J. APPL. MATH. Vol. 52, No. 5, pp. 1405-1425 (1992). [70] D. Chen, P. Kienker, J. Lear and B. Eisenberg: PNP Theory fits current-voltage (IV) relations of a synthetic channel in 7 solutions. Biophys. J. 68:A370 (1995). [71] A. J. M. Garrett and L. Poladian: Refined derivation, exact solutions and singular limits of the Poisson Boltzmann equation, Ann. Phys. 188, 386-435 (1988). [72] B. Hille, Ion channels of excitable membranes, 3rd Edition, Sinauer Associates, Inc. (2001). [73] C. C. Lee, H. Lee, Y. Hyon, T. C. Lin and C. Liu: Renormalized Poisson-Boltzmann Equations: One-Dimensional Solutions, Nonlinearity, submitted (2010). [74] C. C. Lee, T. C. Lin and C. Liu: Solutions of N-D renormalized Poisson-Boltzmann equations, N≥1, preprint. [75] A. Mauro: Space Charge Regions in Fixed Charge Membranes and the Associated Property of Capacitance, Biophys J. 2:179-198 (1962). [76] J. E. Marsden and A. J. Chorin: A Mathematical Introduction To Fluid Mechanics, Springer (1993). [77] B. W. Ninham and V. A. Parsegian: Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution, J. theor. Biol. Vol. 31, No. 3, pp. 405-428 (1971). [78] J. H. Park and J. W. Jerome: Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study, SIAM J. APPL. MATH. Vol. 57, No. 3, pp. 609-630 (1997). [79] R. Ryham, C. Liu, and L. Zikatanov: An Mathematical Models for the Deformation of Electrolyte Droplets, Discrete Contin. Dyn. Syst. Ser. B 8 (2007), no. 3, p. 649–661. [80] R. Ryham: An Energetic Variational Approach To Mathematical Modeling Of Charged Fluids: Charge Phases, Simulation And Well Posedness, thesis, Pennsylvania State University, 2006. [81] R. Ryham, C. Liu and Z.Q.Wang: On electro-kinetic fluids: one dimensional configurations, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 2, p. 357–371. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46057 | - |
| dc.description.abstract | In this thesis, we investigate two different types partial differential equations, one is the coupled nonlinear Schrödinger equations and the other is the renormalize Poisson-Boltzmann equations (the steady-state solutions of the Poisson-Nernst-Planck systems).
Recently, a rich variety of dynamical phenomena and a turbulent relaxation have been observed in rotating Bose-Einstein condensates depicted by Gross-Pitaevskii equations coupled with rotating fields and trap potentials. The dynamical phenomena range from shock-wave formation to anisotropic sound propagation. The turbulent relaxation leads to the crystallization of vortex lattices. To see the dynamical phenomena and the turbulent relaxation of two-component rotating Bose-Einstein condensates, we study the incompressible and the compressible limits of two-component systems of Gross-Pitaevskii equations. Our arguments generalize the idea of [22] and define 'H-function' a modulated energy functional which may control the propagation of densities and linear momentums under the effect of rotating fields and trap potentials. The Poisson-Boltzmann (PB) equation is conventionally used to model the equilibrium of bulk ionic species in different media and solvents. We study a renormalized Poisson-Boltzmann (RPB) equation with a small dielectric parameter ∈2 and nonlocal nonlinearity which takes into consideration of the preservation of the total amounts of each individual ion. This equation can be derived from the original Poisson-Nernst-Planck (PNP) system. Under Robin type boundary conditions with various coefficient scales, we demonstrate the asymptotic behaviors of one dimensional solutions of RPB equations as the parameter $epsilon$ approaches to zero. In particular, we show that in case of electro-neutrality, i.e., (∑N1 κ=1 ακακ=∑N2 l=1 blβl), we prove that φ∈'s solutions of 1-D RPB equations may tend to a nonzero constant c at every interior point as $epsilon$ goes to zero. The value c can be uniquely determined by ακ, bl's valences of ions, ακ, βl's total concentrations of ions and the limit of φ∈'s at the boundary x=±1. In particular, when N1=1, N2=2, a1=b1=1 and b2=2, a precise formula of the value c and the ratio β1/β2 is given in (4.1.3). Such a result can not be found in conventional 1-D Poisson-Boltzmann (PB) equations. On the other hand, as (∑N1 κ=1 ακακ≠∑N2 l=1 blβl) (non-electroneutrality), solutions of 1-D RPB equations have blow-up behavior which also may not be obtained in 1-D PB equations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:52:36Z (GMT). No. of bitstreams: 1 ntu-99-F92221030-1.pdf: 937451 bytes, checksum: c2d9b29b60b87a9c20fe47e1be510e04 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Acknowledgements (in Chinese) i
Acknowledgements (in English) ii Abstract (in Chinese) iii Abstract (in English) iv Contents vi 1 Introduction 1.1 Two-component systems of nonlinear Schrodinger equations. . . . . . . 2 1.2 Poisson-Nernst-Planck systems and renormalized Poisson-Boltzmann equations. . . . . . . . . . . . . . . . . . . . . . 5 2 Limit Problems of Solutions for the Coupled Nonlinear Schrödinger Equations 2.1 Conservation Laws and H-function. . . . . . . . . . . . . . . . . . . . . . . . . ..9 2.2 Incompressible limits for the solution of NLS. . . . . . . . . . . . . . . . . . 20 2.3 Compressible limits for the solution of NLS. . . . . . . . . . . . . . . . . . . 23 2.4 Proofs of Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Proof of Theorem 2.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 2.5 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 Renormalized Poisson-Boltzmann (RPB) Equations: One-Dimensional Solutions 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.1 MainTheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Electroneutral cases (α=β) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Interior estimates of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.2 Boundary asymptotic behaviors of solutions . . . . . . . . . . . . . . . . 51 3.3 Non-electroneutral cases (α≠β). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.1 Interior estimates of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.2 Boundary estimates of solutions . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4 Comparison of RPB and PB equations . . . . . . . . . . . . . . . . . . . . . 68 3.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.6 Appendix: Some Results in High Dimension Cases . . . . . . . . . . . . 73 3.6.1 Existence and uniqueness for solutions of RPB. . . . . . . . . . . . . . 73 3.6.2 Asymptotic blow-up properties . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Renormalized Poisson-Boltzmann Equations for Multiple Species Ions 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1.1 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2 Electroneutral cases (∑N1 κ=1 ακακ=∑N2 l=1 blβl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2.1 Interior estimates of solutions. . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2.2 The relations of c and t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3 Non-electroneutral cases (∑N1 κ=1 ακακ≠∑N2 l=1 blβl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.1 Boundary estimates of solutions. . . . . . . . . . . . . . . . . . . . . . . . 103 4.3.2 Interior estimates of solutions. . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.4 Solutions of RPB and PB equations. . . . . . . . . . . . . . . . . . . . . . . 112 4.4.1 Proof of Theorem 4.1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.6 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5 Ongoing Problem: Energetic Variational Approaches in Multi-Spinor Bose-Einstein Condensate 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Derivation of the system: Variational structure. . . . . . . . . . . . . . . 124 5.3 Exact solutions in one-dimensional. . . . . . . . . . . . . . . . . . . . . . . 127 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 | |
| dc.language.iso | en | |
| dc.subject | 泊松-波茲曼方程 | zh_TW |
| dc.subject | 玻氏-愛因斯坦凝聚 | zh_TW |
| dc.subject | 薛丁格方程 | zh_TW |
| dc.subject | 可壓縮極限 | zh_TW |
| dc.subject | 不可壓縮極限 | zh_TW |
| dc.subject | 泊松-能斯特-普朗克方程 | zh_TW |
| dc.subject | Bose-Einstein condensates | en |
| dc.subject | Poisson-Boltzmann Equation | en |
| dc.subject | Poisson-Nernst-Planck Equation | en |
| dc.subject | incompressible limit | en |
| dc.subject | compressible limit | en |
| dc.subject | Schrodinger equation | en |
| dc.title | 非線性薛丁格方程組的極限問題與泊松-能斯特-普朗克方程組的穩態解 | zh_TW |
| dc.title | Limit Problems of Solutions for the Coupled Nonlinear Schrödinger Equations and Steady-state Solutions of the Poisson-Nernst-Planck Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 許世壁,柳春,陳俊全,郭忠勝,陳建隆,吳宗芳 | |
| dc.subject.keyword | 玻氏-愛因斯坦凝聚,薛丁格方程,可壓縮極限,不可壓縮極限,泊松-能斯特-普朗克方程,泊松-波茲曼方程, | zh_TW |
| dc.subject.keyword | Bose-Einstein condensates,Schrodinger equation,compressible limit,incompressible limit,Poisson-Nernst-Planck Equation,Poisson-Boltzmann Equation, | en |
| dc.relation.page | 139 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 915.48 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
